

Infiltration Feasibility Study October 2023

Prepared by: Wood Rodgers, Inc.

A Butte County Reclamation District Operating Under Division 15 of the California Water Code

5130 Anita Road Chico, California 95973

(530) 864-0347

rockcreekreclamation@gmail.com

Table of Contents

1.0	INTRODUCTION AND PURPOSE1
2.0	BACKGROUND1
2.1.	General Background1
2.2.	Previous Studies and Existing Modeling Information
3.0	FEMA EFFECTIVE FIRM
4.0	GROUND SURFACE ASSESSMENTS
5.0	HYDROLOGIC DATA COLLECTION AND USE
5.1.	Rainfall Data4
5.2.	Topographic Data7
5.3.	Soil Data7
6.0	MODELING APPROACH
6.1.	Baseline Modeling Approach7
6.1.1.	Hydrological (Surface Runoff) Modeling
6.1.2.	Hydraulic Modeling
6.2.	Baseline Modeling Results
6.3.	Proposed Condition Modeling Approach12
6.4.	Proposed Condition Scenarios and Results
6.4.1.	20% Dam Height
6.4.2.	40% Dam Height17
6.4.3.	60% Dam Height21
6.4.4.	80% Dam Height25
6.4.5.	100% Dam Height
7.0	AQUIFER ASSESSMENT
8.0	CONCLUSION AND SUMMARY

Figures

- Figure 1 20 Site Locations
- Figure 2 Sand Creek Watersheds
- Figure 3 Effective FEMA Floodplain
- Figure 4 Potential Recharge Areas
- Figure 5 Site Photo Locations
- Figure 6 Topography
- Figure 7 Assumed Dam Locations and Inundation Areas

Appendices

- Appendix A GSA Report
- Appendix B Geomorphic Assessment Data
- $\label{eq:Appendix C} \quad \mbox{- Technical Memorandum} Aquifer \mbox{ Assessment}$
- Appendix D Digital Files

1.0 INTRODUCTION AND PURPOSE

Wood Rodgers Inc. (Wood Rodgers) has been contracted by the Rock Creek Reclamation District to provide a conceptual groundwater recharge/infiltration analysis for assessing the potential for increasing aquifer recharge from surface water in the Sand Creek watershed north of the City of Chico, California. This report is intended to document the literature review of previously available analysis, new data collection methodology, hydrological and hydraulic analyses, and the method adopted to analyze baseline and proposed condition infiltration through the potential groundwater recharge site(s) within the Sand Creek watershed.

The Sand Creek watershed is located north of Rock Creek and east of State Route 99 (SR99) in Butte County, California. Twenty potential infiltration areas were identified within the Sand Creek watershed by the RCRD as part of the scoping effort for this study. **Figure 1** shows the location of the area studied and the initial 20 potential infiltration sites.

The purpose of this study is to determine locations and potential structural measures that may be constructed to increase groundwater recharge and assess their effectiveness. This will be achieved by analyzing the existing (baseline) condition infiltration volume through the site(s) and then analyzing the proposed infiltration enhancement scenarios to demonstrate how they could increase the recharge capacity of the respective basins. This study provides a feasibility-level assessment of the infiltration volume for existing and proposed conditions in the project area. Alternatives that could be implemented to improve/increase the infiltrated volume are described, as well as the approach and methodology used to evaluate the alternatives. Further study would be needed to identify a preferred and implementable alternative.

2.0 BACKGROUND

2.1. General Background

An aquifer is a geological formation that consists of underground layers of permeable rock, sediment, or soil capable of storing and transmitting water. These natural underground "reservoirs" play a crucial role in groundwater storage and supply. Infiltration refers to the process by which water from precipitation or surface sources penetrate into the ground, recharging aquifers and replenishing underground water resources. Together, these formations and processes are essential components of the Earth's hydrological cycle, sustaining ecosystems and providing a vital source of freshwater for human consumption and various other uses. Aquifers, their physical structure, infiltration capacity, and percolation processes are closely interconnected and occur simultaneously, necessitating comprehensive joint study. The quantity of water that can be infiltrated is inherently reliant on the specific characteristics of the aquifer and the soil layers it must pass through to reach it. Therefore, relying solely on hydrological (surface) analysis is insufficient for drawing conclusions; a combined approach that includes geological analysis is essential for a thorough understanding of these processes. However, the quantification of storage underground cannot be well defined in sufficient detail in many areas because measurements of pore spaces within underground sediments is very limited and expensive to collect, forcing analysis to rely on interpolations and projections of data.

Relying solely on a desk evaluation and analysis can yield imprecise results for such studies, which demand on-site visits and accurate data collection for more precise results. Our team conducted a field visit to assess hydromorphic conditions and evaluate infiltration conditions in Sand Creek. This fieldwork serves as a

reference point to validate the feasibility of proposed alternatives and the results simulated by the feasibility study model.

2.2. Previous Studies and Existing Modeling Information

The Rock Creek watershed, situated in Butte and Tehama counties in California, is part of the larger hydrological unit known as Big Chico Creek – Sacramento River. Originating in the Sierra Nevada Mountains, this watershed experiences runoff that flows in a southwest direction until it reaches the confluence of Rock Creek and Mud Creek. Mud Creek then continues for approximately two miles before joining the Sacramento River. The northeastern section of this watershed encompasses foothills and mountainous terrain, with elevations ranging from around 200 to 3,900 feet. In contrast, the southwestern part lies within foothills and valleys, with elevations spanning from approximately 560 to 135 feet. The primary watercourse in this watershed is Rock Creek, which has two named tributaries, Keefer Slough and Sand Creek. In the upper reaches of the watershed, Rock Creek spills into the upstream end of Keefer Slough, which ultimately merges with Rock Creek in the lower part of the watershed. Additionally, there are several small, unnamed tributaries that contribute to the Rock Creek watershed.

The Northern Region Office of the California Department of Water Resources (DWR) conducted hydrological modeling for the Rock Creek watershed in November 2021. They utilized the Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS) developed by the United States Army Corps of Engineers (USACE) for this purpose. The hydrologic model used in this study was initially provided to Butte County by DWR and subsequently employed by Wood Rodgers as part of the Rock Creek Nord Feasibility Study, which assessed flooding alternatives affecting greater Rock Creek and Keefer Slough. The primary focus of the new infiltration study centers on the Sand Creek portion of the watershed. As the original DWR model and subsequent feasibility study lacked the required level of detail for the infiltration study, Wood Rodgers subdivided the Sand Creek watershed at a specific point of interest, where more detailed streamflow estimates were essential. No modifications were made to the remainder of the Rock Creek model. The necessary hydrologic parameters were then computed for this newly delineated Sand Creek Sub-Watershed. Refer to **Figure 2** for a visual representation of the revised Sand Creek watershed delineation.

The DWR incorporated publicly-available rainfall frequency projections from the National Oceanic and Atmospheric Administration (NOAA) Atlas 14 into its simulation, to assess flooding. It is important to note that the NOAA Atlas 14 dataset is a statistical analysis that does not encompass all rainfall gauges within Butte County, or directly represent historical data. The primary objective of the current study is to simulate long-term historical hourly conditions and corresponding infiltration rates/volumes at the subject sites. In order to accurately represent the local rainfall conditions and to generate long-term hourly flow data, Wood Rodgers replaced the NOAA dataset (hypothetical rainfall) with historically measured (observed) gauge data collected from February 2000 to August 2023.

Wood Rodgers utilized the HEC-RAS 2D model for the previous feasibility study effort that covers a larger watershed area, including Rock Creek, which results in longer model run time. A separate baseline model was developed with a specific focus on the Sand Creek Watershed and the subject sites. This model is utilized for the purpose of identifying long-term hourly infiltration patterns across the sites in baseline. This focused HEC-RAS model was utilized to generate rating curve information required for evaluating the proposed conditions. The modeling methodologies, data sources, and underlying assumptions within the workflow are elaborated upon in subsequent sections of this report.

3.0 FEMA EFFECTIVE FIRM

Basins $D_{1\&2}$ and E_1 are currently mapped within a Federal Emergency Management Agency (FEMA) Special Flood Hazard Area that is designated Zone A on the Flood Insurance Rate Map (FIRM) 06007C0575E (dated January 6, 2011). Since the site is located within the FEMA's currently mapped floodplain, a Letter of Map Change Request (LOMR) would be necessary to change the flood limits after any flood-limits altering project. The request should be made through detailed hydrological and hydraulic analyses which shows modeling results performed in accordance with FEMA criteria. This mapping change can be a separate study after any construction is completed. **Figure 3** shows the FIRM information. Any proposed increases in flooded areas outside of the published EMA Special Flood Hazard Area due to impounding water would need to be assessed by Butte County or map revision requirements. If there are no existing structures to insure under the National Flood Insurance Program (NFIP), and the zoning and land use prohibit future development, there may be no need to define the flood hazard with FEMA in order to assign flood insurance rates.

4.0 GROUND SURFACE ASSESSMENTS

The purpose of this study is to quantify the baseline infiltration volume and explore various alternatives for increasing the infiltration capacity of the subject basins. The primary option is to construct a dam to retain water for a specific duration. Once retention and infiltration can be quantified, future studies will need to assess environmental constraints, historical preservation issues, and water rights issues. It's important to note that subsurface conditions have only preliminarily been evaluated in this study, any findings presented here are subject to modification once they are evaluated. The decision to move forward with additional analysis depends on qualifying for available funding, the State's and Butte County's ordinances and requirements, and RCRD's willingness to oversee onsite efforts.

GeoSystem Analysis, Inc. (GSA) supported the analysis by performing onsite identification of potential surface infiltration rates within the Sand Creek watershed. GSA and its subconsultant performed an aboveground Frequency Domain Electro-Magnetic (FDEM) survey to assess long term infiltration within the Sand Creek Watershed. FDEM is a surface-based electromagnetic tool used to detect variations in subsurface electrical conductivity (or its inverse, resistivity) using electromagnetic induction principles. Over twenty sites were assessed and five of them have been identified as potential sites, namely, Sites $D_{1\&2}$, E_1 , E_2 , J_1 , and J_2 , as shown on **Figure 4**. GSA's primary focus was to identify the potential infiltration rates and locations within the site, and they concluded that these five areas demonstrate greater infiltration potential. A maximum constant infiltration rate of 0.7 ft/day was determined for the five identified areas, as provided by GSA. Further details and explanations can be found in GSA's report, provided in **Appendix A**.

In addition to the FDEM surveys, Wood Rodgers performed a site visit to document the geomorphic stream conditions within much of the project area. **Figure 5** shows the locations of all of the photographs taken to depict the bank and bed conditions at key locations. At the onset of the project, it was assumed that the primary infiltration potential would be located along stream bed areas, where looser sediments accumulate over time, in locations where water naturally collects already, and where structures to retain water could easily be constructed. **Appendix B** provides all of the photographic documentation.

The qualitative findings from the site visit show that bank scour conditions are naturally created, given the slope/terrain characteristics of the watershed, as the existing meandering channels are subjected to periodic higher flows. It is assumed that any proposed dam-like features that may be constructed to impound water

will not worsen erosion stream conditions downstream of the impoundment, as long as the impounding structure is designed for overtopping during high-flow conditions. Dam-like structures serve to reduce peak flow downstream while they are filling, which will reduce bank erosion during smaller storm events. During larger storm events, the dam passes flows downstream identical to pre-structure conditions after the peak has passed.

The main impacts to geomorphic stream conditions that are created by impounding water are from trapping sediment upstream of dams and thereby starving the downstream reaches of sediment that would have otherwise migrated. Removing upstream sediment will require some degree of routine maintenance. It will not likely detract from the infiltration capacity of the basin, but if allowed to accumulate it will deplete surface storage and potentially block low-flow discharges from the dam outlet. Sediment management will be an important consideration for design and implementation, and will require more in-depth analysis to quantify any long term impacts.

5.0 HYDROLOGIC DATA COLLECTION AND USE

This section of the report provides the information regarding the hydrologic data necessary to conduct the study. Mainly spatial data, temporal data and topographic data have been used for the analysis.

5.1. Rainfall Data

In California, numerous organizations have been actively collecting rainfall data. For this particular project, Wood Rodgers conducted an extensive review of data sources, including Day-met, UC-IPM, CIMIS, CDEC, CA-WC, and NOAA. Among these sources, the California Data Exchange Center (CDEC) stood out for its long-term rainfall data collection and preservation. No measured rainfall data was identified directly within the Sand Creek watershed. However, within the Sand Creek vicinity, there is an array of rain gauges available. The CDEC database identifies rainfall collection sites by a three-letter ID, such as CRG, CST, DES, CHI, PED, BLW, BIC, MUC, LCH, BKC, BPD, CES, and more. Wood Rodgers gathered and analyzed data from all of these stations before deciding on their suitability for hydrological rainfall runoff modeling. The main characteristics of the data were the measured time interval for data collection, the length of the period of record, and the continuity/completeness of the data set. Given the size of the watershed, it was important to obtain a maximum interval of hourly rainfall data. While daily and monthly data is more prevalent, it does not provide enough detail to understand how storms realistically fill and drain during a single day. Our analysis revealed that CRG possessed high-quality hourly data, with minimal instances of missing values recorded over an extended period. While the location of the CRG gauge is approximately 17 miles northwest of the Sand Creek watershed, the elevations and climate conditions for each location are similar. Due to the lack of long-term data and the prevalence of missing values in other stations, only the CRG gauge was used for this study as the best representation of historical rainfall in the watershed.

The CRG gauge has hourly rainfall recorded from February 2000 to August 2023, and CRG data up to August 2023 has been used in the study. Wood Rodgers utilized the hourly data to calculate both annual and monthly average rainfall values. The analysis revealed that annual rainfall ranged from 5.13 inches to 32.22 inches throughout the twenty-four-year observation period, with an average annual rainfall of 19.33 inches, averaged according to calendar year. **Table 1** provides a summary of annual rainfall values

throughout this time frame, while **Chart 1** visually illustrates the variations in rainfall over the mentioned period.

Table 1: Annual Rainfall	Observed at Station	CRG
--------------------------	---------------------	-----

Calendar Year	Rainfall-Inch
2000	13.15
2001	26.98
2002	19.49
2003	27.35
2004	22.62
2005	27.93
2006	22.2
2007	10.46
2008	15.36
2009	19.27
2010	28.85
2011	18.46
2012	23.31
2013	5.13
2014	23.51
2015	8.62
2016	26.27
2017	22.78
2018	16.41
2019	32.22
2020	6.84
2021	15.7
2022	10.57
2023	20.54
Avg. annual rainfall	19.33

Chart 1: - Annual (Calendar Year) Rainfall Variation Graph

Monthly average rainfall from twenty-four years of recorded data was calculated which shows May to September months having very low rainfall. The maximum average monthly rainfall occurred in December which is 4.29 inches. **Table 2** provides a summary of average monthly rainfall values for this time frame, while **Chart 2** visually illustrates the monthly variations in rainfall over the recorded period.

Month	Rainfall-Inch
Jan	3.74
Feb	3.16
Mar	2.62
Apr	1.26
May	0.94
Jun	0.24
Jul	0.02
Aug	0.04
Sep	0.27
Oct	1.12
Nov	2.12
Dec	4.29

 Table 2: - Monthly average rainfall measured at station CRG.

Chart 2: - Historical average monthly rainfall at CRG

5.2. Topographic Data

A one-meter Digital Elevation Model (DEM) was acquired from the United States Geological Survey (USGS) via The National Map website (USGS, 2021). To prepare the data for analysis, various essential tasks such as unit conversion, projection definition, clipping, and mosaic were performed using the ArcGIS Pro software. **Figure 6** Shows the topographic data. The horizontal datum utilized for the project evaluations is the North American Datum of 1983 (NAD 83) State Plane California Zone II Federal Information Processing Standard (FIPS) 0402 (US Feet). The vertical datum utilized is the North American Vertical Datum 1988 (NAVD 88).

5.3. Soil Data

Wood Rodgers retrieved Gridded Soil Survey Geographic Data (USDA-NRCS, 2020) from the Natural Resources Conservation Service (NRCS) and employed Geographic Information System (GIS) Pro software to identify the prevailing soil types within the Sand Creek Watershed. The watershed is predominantly characterized by NRCS soil types C and D. C type soils are most abundant in the northwest region of the basin and primarily consist of clay. These C class soils exhibit a high available water capacity and are classified with a high runoff potential. Conversely, D type soils are dominant across the majority of the basin and primarily consist of gravelly loam. The D class soils, in contrast, possess a low available water capacity but are also classified with a high runoff potential. The soil properties serve as the basis for assessing watershed runoff upstream and feeding into the infiltration basin areas.

6.0 MODELING APPROACH

6.1. Baseline Modeling Approach

To estimate the existing infiltration volume, extensive hydrological and hydraulic modeling, as well as GIS analysis, were performed. Infiltration is a vital component of the water cycle or water balance, and to isolate infiltration from the cycle, it's essential to consider areas and durations of inundation. The HEC-RAS 2D

model was used to identify the area of inundation across each infiltration area for a wide range of flow conditions to develop a flow/area relationship. This study considered five recharge zones, and the ArcPy programming approach was used to calculate the inundation area for each flow value within each polygon. To estimate the volume of infiltration, the inundated area was multiplied by the assessed constant infiltration rate of 0.7 feet per day (0.35 inches/hour). This calculation resulted in an infiltration volume versus inflow rating curve. The updated Sand Creek hydrologic modeling in HEC-HMS was utilized to simulate historic hourly runoff values as inflow entering each infiltration polygon, and the previously developed volume rating curve was used to calculate the infiltration volume for each recharge zone with respect to hourly simulated historical runoff.

6.1.1.Hydrological (Surface Runoff) Modeling

As previously explained, the previously developed HEC-HMS model with modifications was utilized for this analysis. The study focuses on Sand Creek and its watershed. Modifications and calculations of watershed and hydrological parameters were adjusted exclusively for the Sand Creek Watershed. Hourly rainfall data from the selected rain gauge were used to estimate historical runoff. The upstream flow entering each recharge zone was computed and considered as basin inflow in the calculations. The flow entering recharge zones J_1 and J_2 is the same, as is the case with E_1 and E_2 . However, the infiltration volume through each of these zones would differ according to their distinct inundation areas. The main update in the rainfall-runoff modeling is related to the historical rainfall input. Most of the information remains consistent with Wood Rodgers' previous analysis conducted for the Rock Creek Nord Feasibility Study.

6.1.2.Hydraulic Modeling

The available HEC-RAS model covers Sand and Rock Creek; however, it has a significantly longer run time. To reduce this extended runtime, Wood Rodgers decided to develop a new truncated model focused only on the area of interest. HEC-RAS version 6.3.1 was used for model development, with the river and bank areas using finer/denser mesh sizes. A significant number of break lines were added to enforce cell alignment along the creeks, including streets and roads. The upstream boundary condition is a hypothetical flood hydrograph, with stepped flows, while the downstream boundary condition is normal depth. The previously described land and soil data were used to define the surface characteristics. This hydraulic analysis was employed to establish the rating curve relationship between inundation area and flow at each of the five sites.

6.2. Baseline Modeling Results

After conducting Rainfall Runoff modeling for the period of 2000-2023, and developing a rating curve through hydraulic modeling, Wood Rodgers calculated the hourly infiltration volume for all five recharge zones over a span of twenty-four years. These results were subsequently analyzed on both a monthly and annual/average basis. The monthly analysis reveals that Basin $D_{1\&2}$ provides the largest infiltration potential, consistently demonstrating higher monthly infiltrated volumes compared to the other basins. Basin J₁ exhibits the lowest potential under baseline conditions. The wettest months from October to May are favorable in terms of generating substantial infiltration volume, while the period from June to September records significantly lower levels of infiltration volume. The volume of realized historical infiltration is influenced by the amount of inflow being applied as well as the vertical dimensions and slopes of each potential recharge area. The D1&2 area is the most downstream of the potential sites with the largest contributing tributary area and inflow, and it is also the infiltration area with the flattest and widest natural

configuration to allow for most infiltration area under the same flow conditions. The J1 basin is located in steeper terrain with a smaller tributary area and inflow.

Table 3 provides data on the average monthly infiltration volume, while **Chart 3** visually represents the monthly variations in infiltration volume for all months. The rating curve and time series data is attached to **Appendix D**.

Month	BasinD1&2	Basin_E1	Basin_E2	Basin_J1	Basin_J2
Jan	8.19	2.75	4.14	0.12	4.07
Feb	6.71	2.28	3.42	0.10	3.30
Mar	6.49	2.14	3.32	0.10	3.15
Apr	3.51	1.12	1.78	0.04	1.70
May	2.66	0.83	1.30	0.04	1.34
Jun	0.83	0.25	0.42	0.01	0.40
Jul	0.05	0.02	0.03	0.00	0.02
Aug	0.13	0.04	0.07	0.00	0.05
Sep	0.93	0.28	0.45	0.01	0.47
Oct	2.97	0.95	1.48	0.04	1.45
Nov	5.38	1.75	2.70	0.07	2.68
Dec	8.86	3.00	4.49	0.15	4.39

Table 3: - Monthly Average Infiltration Volume (acre-feet) through each basin under Baseline Condition

Chart 3: - Monthly Infiltration Volume through each Basin

Annual analysis shows that the average annual infiltration volume through recharge zone $D_{1\&2}$ is 45.63 acre-feet, and through basin J_1 is 0.66 acre-feet. The baseline analysis shows that basin $D_{1\&2}$ has a larger realized infiltration volume. Improvement is needed for increasing infiltration in basin J_1 . **Table 4** shows

the baseline condition annual capacity of each basin, and Charts 4 to 8 graphically illustrate the values presented in the table.

Year	BasinD1&2	Basin_E1	Basin_E2	Basin_J1	Basin_J2
2000	33.28	10.83	16.99	0.40	15.93
2001	64.82	21.82	33.31	0.85	32.15
2002	44.41	14.96	22.22	0.69	21.72
2003	60.71	20.10	29.99	1.17	30.28
2004	50.67	16.89	25.82	0.71	25.17
2005	63.96	21.06	32.16	1.24	31.48
2006	53.24	17.15	27.00	0.80	25.84
2007	28.46	9.42	14.71	0.30	13.90
2008	27.65	9.30	13.92	0.45	13.51
2009	45.15	15.10	23.24	0.61	21.99
2010	69.28	23.07	35.42	0.90	34.02
2011	47.14	15.23	23.42	0.60	23.44
2012	51.22	17.29	26.00	0.73	25.57
2013	13.78	4.28	7.14	0.15	6.49
2014	54.77	18.27	27.18	0.89	27.10
2015	21.57	6.79	10.85	0.28	10.57
2016	65.72	21.47	32.93	0.89	32.44
2017	54.52	17.76	27.46	0.73	27.29
2018	39.27	12.96	20.11	0.53	19.19
2019	67.89	22.92	34.21	1.06	33.53
2020	21.16	6.47	10.86	0.22	10.08
2021	38.26	12.42	19.30	0.53	18.56
2022	27.77	8.80	13.71	0.37	13.68
2023	50.44	16.76	25.20	0.76	25.54
Average	45.63	15.04	23.04	0.66	22.48

Table 4: - Annual Infiltration Volume (acre-feet) through each Basin under baseline Condition

Chart 4: - Estimated Infiltration Volume through Basin D1&2

Chart 5: - Estimated Infiltration Volume through Basin E₁

Chart 6: - Estimated Infiltration Volume through Basin E2

Chart 7: - Estimated Infiltration Volume through Basin J1

Chart 8: - Estimated Infiltration Volume through Basin J₂

6.3. Proposed Condition Modeling Approach

For the proposed condition, where dams or other structures are developed to impound more recharge water, Wood Rodgers utilized a Linear Programming concept to account for water entering, storing and exiting (piped outflow, infiltration and overtopping) each basin. Wood Rodgers conducted spreadsheet-based calculations to quantify time-series infiltration over the specified time period (2000-2023). The HEC-HMS historical runoff was considered as the inflow for each recharge zone within the basin. A one-foot diameter circular culvert was assumed to maintain low-flow continuity downstream, which is counted as water that passes downstream before it can infiltrate in the recharge zone. After deducting the pipe flow, the remaining water can be calculated, stored and infiltrated for each time increment. The incremental and maximum basin storage capacity was determined using the ArcGIS Pro tool, which provides elevation data, corresponding volume, and area measurements from topographic data. This is referred to as the Elevation-Storage-Area (E-S-A) Curve. E-S-A curves were developed for each recharge area using the proposed dam locations and alignments shown on Figure 7. This figure also displays the approximate inundated (flooded) areas behind each proposed structure. These areas correspond to the maximum assessed height of each proposed structure and indicate how FEMA floodplain mapping might be impacted should any of the five recharge locations be constructed. An extensive assessment of flood frequencies and volumes was not part of this study, however, given the number of times the detention basins filled and overtopped within the assessed historical record (2000-2023) for infiltration, it is not likely that there will be any significant reduction in the 100-year flood downstream. Very large flood events will quickly fill the basin early in the storm, as these infiltration basins are configured to capture smaller flood events, and will pass the peak of such a flood event downstream relatively unattenuated.

By referencing the E-S-A curve, we calculated the storage elevation corresponding to the volume of water entering the basin. HEC-RAS software was also utilized to create the rating curve for quantifying the flow through the pipe in relation to a specified water surface elevation in the reservoir, i.e., the recharge basin. Using the rating curve and the initial water surface elevation in the basin due to inflow, we calculated the pipe flow. The remaining volume in the basin is obtained by subtracting the flow leaving the basin through the pipe from the initial inflow volume. Once again referencing the E-S-A curve and the remaining volume in the basin, we calculated the elevation corresponding to this remaining volume. Using this elevation, we identified the inundation area within the basin . This step yields the intermediate inundation area before infiltration. After multiplying the inundation area by a constant infiltration rate, we can calculate the infiltrated volume for each time increment. Finally, for each time step, the final (residual) volume is

determined after pipe outflow and infiltration are accounted for. This volume is then carried over to the next time increment and added to the new inflow volume for the next time increment. The HEC-RAS rating curve developed for each culvert and the E-S-A curves are provided in **Appendix C**.

6.4. Proposed Condition Scenarios and Results

For the purposes of this study, the full capacity of each basin is considered to be achieved in relation to the proposed dam height. A series of dam heights were assessed for each Basin to determine the impact of varying dam heights on recharge. For example, in the case of basin J_1 , the full capacity dam height is 10 feet, with 20% dam height at 2 feet, 40% dam height at 4 feet, 60% dam height at 6 feet, and 80% dam height at 8 feet. The same concept applies to all recharge basins. The maximum assessed dam heights for Basins $D_{1\&2}$, E_1 , E_2 , J_1 , and J_2 are 17 feet, 8 feet, 14 feet, 10 feet, and 18 feet, respectively. All calculations in this study have been based on these reference dam heights. The following section explains the results of each scenario.

6.4.1. 20% Dam Height

This alternative involves installing a dam height at 20% of the maximum dam height in each recharge basin. No changes to the pipe diameter have been made, meaning that the same diameter pipe has been retained for all scenarios. Similar to what was observed in the baseline scenario, the infiltration volume is notably lower from June to September. In the baseline condition, a two-dimensional calculation was carried out using HEC-RAS 2D with a sloped floodplain area. However, in the proposed condition, a linear calculation was performed, which assessed ponded storage levels and does not fully account for the volume when considering a shorter dam height. Therefore, because of the limitation in capturing the 20% volume over the baseline condition, and the limited benefit of a dam at 20% of maximum height, this step in the incremental analysis was omitted for the remaining basins. **Table 5** displays the monthly average capacity corresponding to a 20% dam height for each basin, while **Chart 9** provides a graphical representation of these results.

Month	Basin_D1&2	Basin_E1	Basin_E2	Basin_J1	Basin_J2	All Basins
Jan	5.93	2.06	2.49	3.34	1.21	15.03
Feb	4.80	1.67	2.03	2.67	0.96	12.13
Mar	5.00	1.93	2.25	2.77	1.04	12.99
Apr	2.75	1.17	1.29	1.54	0.61	7.36
May	2.05	0.80	0.91	1.17	0.45	5.38
Jun	0.70	0.37	0.38	0.39	0.17	2.02
Jul	0.04	0.03	0.03	0.02	0.01	0.13
Aug	0.11	0.09	0.08	0.06	0.03	0.37
Sep	0.74	0.30	0.33	0.43	0.17	1.98
Oct	2.25	0.90	1.04	1.24	0.46	5.89
Nov	4.03	1.53	1.77	2.29	0.86	10.47
Dec	6.33	2.25	2.69	3.58	1.31	16.16
Ann. Total	34.74	13.09	15.28	19.52	7.27	89.91

Table 5: Monthly Average Infiltration Volume (acre-feet) under 20% Dam Height

DGEF

Chart 9: - Average Monthly Infiltration Volume With 20% Dam Height

Similarly, the annual recharge volume was estimated and compared to baseline data, which shows that the annual volume decreased in each basin ($D_{1\&2}$, E_1 , E_2 , and J_2) by 25%, 14%, 35%, and 68%, respectively, except for basin J_1 . This difference is primarily due to the methodologies used, and indicates negligible benefit at this dam height. **Table 6** shows the annual infiltration volume, and **Charts 10 to 14** show the annual infiltration volume for each basin.

Fable 6: - Annual infiltration volume	(acre-feet) Under 20% Capac	ity Dam Height Scenario
---------------------------------------	------------	-------------------	-------------------------

Year	Basin_D1&2	Basin_E1	Basin_E2	Basin_J1	Basin_J2
2000	25.89	10.26	11.82	14.28	5.45
2001	48.49	16.35	20.14	27.24	9.74
2002	31.54	10.49	12.92	17.68	6.27
2003	43.85	15.80	18.59	24.84	9.21
2004	36.70	13.62	16.06	20.77	7.57
2005	48.00	17.45	20.54	26.69	9.80
2006	39.76	17.59	19.38	22.30	8.69
2007	22.43	9.39	10.40	12.81	5.04
2008	19.56	7.61	8.75	10.83	4.14
2009	33.85	13.04	15.21	18.95	7.22
2010	52.28	20.06	23.14	29.48	11.10
2011	36.22	13.75	15.97	20.31	7.66
2012	37.03	12.91	15.71	20.87	7.53
2013	10.66	5.64	5.77	6.04	2.57
2014	39.93	13.57	16.57	22.29	7.93

SEF

5

2015	16.62	7.36	7.97	9.25	3.60
2016	49.76	18.03	21.51	27.63	10.16
2017	40.00	15.01	17.56	22.71	8.39
2018	29.37	11.64	13.39	16.61	6.18
2019	47.48	17.77	20.92	27.01	10.07
2020	17.39	8.47	8.88	9.67	4.08
2021	29.67	11.63	13.29	16.45	6.32
2022	20.90	7.94	9.20	11.91	4.39
2023	37.10	11.85	14.75	20.92	7.44
Annual Avg.	33.94	12.80	14.94	19.06	7.11

Chart 10: Total annual infiltration volume in basin D_{1&2}

Chart 11: Total annual infiltration volume in basin E1

Chart 12: Total annual infiltration volume in basin E2

Chart 13: Total annual infiltration volume in basin J₁

Chart 14: Total annual infiltration volume in basin J₂

6.4.2.40% Dam Height

At 40% of the total dam height, the infiltration volume in all basins increases dramatically. **Table 7** displays the average monthly volume. All volumes are presented in acre-feet (ac-ft). **Chart 15** illustrates the monthly average volume in each recharge zone across all twelve months. The colors represent each individual recharge basin volume. This same pattern applies to all months and basins.

Month	BasinD1&2	Basin_E1	Basin_E2	Basin_J1	Basin_J2	All Basins
Jan	24.030	4.404	9.813	6.259	7.570	52.077
Feb	19.749	3.581	8.027	5.047	6.143	42.547
Mar	20.786	3.946	8.453	5.117	6.064	44.366
Apr	11.487	2.286	4.689	2.825	3.370	24.656
May	8.882	1.608	3.445	2.176	2.640	18.751
Jun	2.956	0.664	1.241	0.685	0.793	6.339
Jul	0.188	0.046	0.080	0.043	0.054	0.411
Aug	0.460	0.137	0.204	0.098	0.106	1.006
Sep	2.974	0.598	1.216	0.752	0.866	6.406
Oct	9.010	1.806	3.733	2.265	2.633	19.447
Nov	16.782	3.126	6.730	4.275	5.163	36.076
Dec	26.198	4.766	10.556	6.731	8.234	56.485
Ann. Total	143.503	26.967	58.188	36.274	43.635	308.568

 Table 7: - Average monthly infiltration volume (acre-feet)

Chart 15: Monthly average Infiltration Under 40% Dam Height

Likewise, the annual volume has increased in each basin ($D_{1\&2}$, E_1 , E_2 , J_1 , and J_2) by 207%, 75%, 146%, 5261%, and 89%, respectively. The annual volume infiltrated under the 40% dam height condition is tabulated in **Table 8**. **Charts 16 to 20** show the annual volume (acre-feet) variation in each basin for the years 2000 to 2023.

Year	BasinD1&2	Basin_E1	Basin_E2	Basin_J1	Basin_J2
2000	107.30	20.76	43.65	26.09	31.13
2001	203.98	35.68	81.51	51.66	63.60
2002	121.41	22.93	50.88	32.96	39.78
2003	177.61	33.01	72.04	46.34	56.00
2004	152.53	28.18	61.77	39.15	48.27
2005	195.58	36.56	80.45	49.57	59.76
2006	167.96	33.74	67.76	40.98	48.70
2007	95.30	18.53	38.91	23.60	28.44
2008	81.37	15.47	32.83	20.24	24.17
2009	137.06	26.85	56.74	34.51	40.49
2010	216.53	40.96	88.73	54.77	66.71
2011	155.08	28.08	60.43	37.51	45.03
2012	154.35	27.63	62.16	39.51	47.89
2013	44.43	10.15	18.48	10.70	12.80
2014	160.65	29.24	65.56	41.72	50.03
2015	73.15	14.01	28.96	17.20	20.25
2016	208.95	37.87	83.27	51.91	62.78
2017	168.40	30.94	66.57	42.41	51.20
2018	119.27	23.49	49.61	30.84	36.02
2019	186.49	36.81	77.62	49.33	59.24
2020	74.66	15.69	30.11	17.01	20.15
2021	125.94	23.51	50.84	30.66	35.92
2022	84.74	16.17	34.42	21.97	26.36
2023	152.31	26.26	61.18	39.65	48.04
Annual Avg.	140.21	26.35	56.85	35.43	42.62

Chart 16: - Annual infiltration volume in basin D1&2

Chart 17: - Annual infiltration volume in basin E1

Chart 18: - Annual infiltration volumein basin E2

Chart 19: - Annual infiltration volume in basin J1

Chart 20: - Annual infiltration volume in basin J₂

6.4.3.60% Dam Height

In this alternative approach, Wood Rodgers considered sixty percent of the total height to estimate the inundated area and the volume infiltrating through each recharge zone. Logically, as the dam height increases, the infiltration volume also increases. The amount (volume and duration) of water stored in the recharge zone is affected by the size of the outflow pipe. The diameter of the outflow pipe was set as small as was considered feasible, to maintain low-flow downstream of the recharge basin, to maximize infiltration. If other constraints force the pipe size to increase, like environmental or downstream water rights considerations, the infiltration benefits will lessen.

Table 9 presents the estimated water volume that has infiltrated through each basin. **Chart 21** illustrates the infiltration volume through each basin. When examining individual values from the table, it becomes apparent that the percentage increase is dramatic, even though the absolute values are not exceptionally large.

Month	BasinD1&2	Basin_E1	Basin_E2	Basin_J1	Basin_J2	All Basins
Jan	44.57	8.82	19.89	14.05	25.06	112.38
Feb	35.95	7.17	16.47	11.47	20.11	91.18
Mar	39.20	7.71	17.27	11.43	19.80	95.41
Apr	22.23	4.35	9.72	6.44	11.37	54.11
May	17.68	3.14	7.44	5.08	9.32	42.65
Jun	5.99	1.21	2.52	1.54	2.82	14.08
Jul	0.42	0.08	0.18	0.11	0.22	1.00
Aug	0.76	0.21	0.40	0.21	0.21	1.80
Sep	5.68	1.15	2.39	1.64	2.99	13.86
Oct	16.57	3.45	7.43	4.98	8.79	41.23
Nov	32.20	6.11	14.00	9.70	17.50	79.51
Dec	50.28	9.50	21.97	15.47	28.25	125.46

Table 9: - Average monthly infiltration volume (acre-feet)

Ann. Total 271.54 52.91 119.67 82.10 146.45 672.66

DGEF

Chart 21: - Average monthly infiltration Volume with 60% dam height

Table 10 shows the annual infiltration volume from each basin. The average annual volume for each basin $(D_{1\&2}, E_1, E_2, J_1, \text{ and } J_2)$ is 265, 51, 116, 80, and 143 ac-ft, respectively. In each project, it is important to understand the impact of implementing the proposed scenarios compared to baseline data. **Charts 22 to 26** show the annual infiltration trend. All units are presented in ac-ft.

Year	BasinD1&2	Basin_E1	Basin_E2	Basin_J1	Basin_J2
2000	206.85	40.09	91.04	59.16	102.26
2001	391.68	72.31	171.73	120.11	221.09
2002	217.16	45.79	99.20	71.33	124.14
2003	329.47	65.30	145.72	104.11	181.31
2004	287.60	55.54	127.31	89.09	159.33
2005	357.49	72.81	162.76	113.18	194.31
2006	315.59	63.05	141.17	91.60	158.02
2007	186.05	35.63	81.69	53.72	94.23
2008	148.79	29.94	66.90	44.65	79.93
2009	264.16	52.35	114.78	76.73	139.41
2010	417.96	80.71	182.91	125.06	226.04
2011	312.70	55.31	131.67	88.27	166.13
2012	290.86	55.34	128.65	89.93	162.62
2013	94.44	18.23	39.29	25.23	46.52
2014	297.83	58.89	131.60	93.57	168.93
2015	136.06	26.89	61.00	38.78	67.51
2016	394.68	74.73	174.62	119.14	214.15
2017	317.71	60.30	139.70	97.67	179.50
2018	218.68	45.55	97.29	66.61	118.24

 Table 10: - Annual infiltration volume corresponding to 60% Dam height.

2019	343.81	71.48	152.93	108.34	189.25
2020	153.97	28.84	64.71	40.02	70.41
2021	232.79	46.29	104.78	68.51	115.94
2022	159.22	31.40	70.17	50.02	89.40
2023	292.00	54.03	124.86	89.78	163.44
Annual avg.	265.31	51.70	116.94	80.19	143.00

Chart 22: - Annual Infiltration Volume in Basin D1&2 with 60% Dam Height

Chart 23: - Annual Infiltration Volume in Basin E1 with 60% Dam Height

Chart 24: - Annual Infiltration Volume in Basin E2 with 60% Dam Height

Chart 25: - Annual Infiltration Volume in Basin J1 with 60% Dam Height

Chart 26: - Annual Infiltration Volume in Basin J1 with 60% Dam Height

6.4.4.80% Dam Height

In this scenario, the dam heights used in recharge zones $(D_{1\&2}, E_1, E_2, J_1, \& J_2)$ are as follows: 13.5 feet, 6.5 feet, 11 feet, 8 feet, and 14.5 feet, respectively. This alternative analysis and the accompanying data clearly demonstrate that increasing the dam height significantly enhances the infiltration volume. **Table 11** provides a breakdown of the monthly average infiltration volume. **Chart 27** graphically represents the data presented in the table.

Month	BasinD1&2	Basin_E1	Basin_E2	Basin_J1	Basin_J2	All Basins
Jan	58.05	14.93	32.28	22.60	42.95	170.81
Feb	45.90	12.26	25.86	18.19	33.57	135.77
Mar	50.96	13.04	28.98	18.34	34.42	145.74
Apr	30.06	7.33	16.60	10.44	20.74	85.15
May	23.61	5.42	13.10	8.47	16.35	66.94
Jun	8.18	1.98	4.58	2.62	4.72	22.09
Jul	0.64	0.13	0.35	0.20	0.42	1.74
Aug	0.76	0.34	0.55	0.25	0.21	2.11
Sep	7.95	1.87	4.20	2.74	5.72	22.48
Oct	21.58	5.68	12.09	8.00	15.52	62.87
Nov	43.13	10.42	23.79	15.85	31.93	125.11
Dec	66.60	16.21	36.96	25.35	50.06	195.18
Ann. Total	357.40	89.61	199.33	133.04	256.61	1035.98

Table 11: - Monthl	y average infiltration	volume with	80% dam height
	<i>.</i>		0

Chart 27: Monthly Variation in infiltration volume with 80% dam height

Table 12 presents the annual infiltration volumes for each basin for this scenario. The average volumes for basins $D_{1\&2}$, E_1 , E_2 , J_1 , and J_2 are 349, 87, 194, 129, and 250 acre-feet respectively. When comparing the increase from 60% capacity to 80% capacity, there is an increase of 31%, 69%, 66%, 62%, and 75% in these respective basins. It's worth noting that this increase is somewhat constrained when compared to the earlier increase from 40% to 60% capacity. In the previous transition, from 40% to 60% capacity, the percentage increase exceeded 100% for each basin. However, the increase from 60% to 80% capacity now

remains below 75% for all basins. This is a result of the dam increasing the overall inundation area, **Chart 28** illustrates the annual infiltration trend. The annual volume data for each basin is presented in the same graph.

Year	BasinD1&2	Basin_E1	Basin_E2	Basin_J1	Basin_J2
2000	264.21	67.72	153.52	94.94	179.70
2001	510.15	125.33	285.52	198.45	388.91
2002	275.32	76.50	155.08	111.64	208.97
2003	431.90	109.87	238.39	164.47	323.96
2004	383.40	94.68	210.30	144.15	275.66
2005	465.22	122.83	258.28	177.49	318.92
2006	416.56	106.42	234.88	146.55	277.94
2007	255.97	60.57	140.10	87.76	162.01
2008	197.40	51.25	109.19	72.20	141.23
2009	345.13	86.62	196.49	127.37	219.25
2010	557.79	136.68	308.29	204.56	399.90
2011	419.08	94.83	233.40	151.03	300.92
2012	380.15	95.24	212.95	145.96	279.11
2013	128.87	29.50	72.61	42.99	85.08
2014	392.80	99.44	216.90	151.09	306.08
2015	179.37	45.90	100.94	62.44	120.97
2016	519.56	128.58	287.78	193.46	380.56
2017	421.26	103.71	232.31	160.87	325.79
2018	287.05	75.38	161.18	107.20	198.80
2019	452.88	117.61	250.79	172.01	341.00
2020	198.26	48.48	116.18	66.88	124.65
2021	296.84	79.16	168.93	107.73	198.94
2022	212.31	52.43	116.11	80.53	162.14
2023	388.88	92.81	214.43	146.56	291.90
Annual Avg	349.18	87.56	194.77	129.93	250.52

Table 12: - Annual infiltration volume with 80% Dam Height

Chart 28: - Annual infiltration with 80% dam height

6.4.5.100% Dam Height

This is the maximum alternative considered for quantifying the infiltration volume. Taller dams necessitate a more robust (and costly) construction and may also introduce additional regulatory oversight on operation and maintenance. In this preliminary analysis, the maximum dam heights for each basin ($D_{1\&2}$, E_1 , E_2 , J_1 , & J_2) are 17, 8, 14, 10, and 18 feet, respectively. **Table 13** below presents the average monthly infiltration volume. In conclusion, increasing dam height can enhance infiltration area and volume, but it inevitably leads to greater design and construction costs. **Chart 29** shows the graphical representation of the tabular data. In contrast to other months, from June to September, all basins exhibit lower capacity.

Table 13: - Monthly Average Infiltration Volume with 100% Dam Height

Month	Basin_D1&2	Basin_E1	Basin_E2	Basin_J1	Basin_J2	All Basins
Jan	76.12	20.73	43.14	30.98	58.81	229.79
Feb	59.46	17.07	33.50	24.75	44.96	179.74
Mar	65.55	18.13	38.64	25.12	47.26	194.70
Apr	40.42	10.25	23.01	14.86	27.99	116.52
May	30.70	7.79	17.81	11.79	22.07	90.16
Jun	10.17	2.73	6.31	3.68	5.16	28.05
Jul	1.04	0.19	0.57	0.32	0.42	2.54
Aug	0.76	0.45	0.55	0.25	0.21	2.22
Sep	10.89	2.57	6.13	3.97	8.39	31.96
Oct	28.01	7.82	15.99	11.21	21.10	84.12
Nov	58.27	14.64	32.85	22.27	44.82	172.85
Dec	88.27	22.82	49.74	35.39	68.68	264.90
Ann. Total	469.65	125.19	268.23	184.60	349.89	1397.55

Chart 29: Monthly Average Infiltration Volume with 100% Dam Height

The average annual infiltration volumes projected under 100% capacity alternatives for each basin ($D_{1\&2}$, E_1 , E_2 , J_1 , and J_2) are 458, 122, 262, 180, and 340 acre-feet respectively. The percentage increase in comparison to the baseline condition is dramatic, with values of 905%, 713%, 1037%, 27180%, and 1419% respectively. The increase in annual average volume from 80% to 100% capacity was also quantified, showing a percentage change in each basin of 31%, 39%, 34%, 38%, and 36% respectively. In contrast, the capacity, i.e., the volume increase from 20% to 40% capacity, 40% to 60% capacity, and 60% to 80% capacity, was considerably high. **Table 14** shows the annual trend of infiltration volume in each basin, and **Chart 30** illustrates the data presented in the table graphically.

Year	Basin_D1&2	Basin_E1	Basin_E2	Basin_J1	Basin_J2
2000	342.10	95.57	200.99	129.59	243.27
2001	675.37	177.42	376.89	275.20	540.74
2002	360.27	103.38	200.81	150.81	275.48
2003	578.81	152.53	318.51	227.48	454.25
2004	500.76	132.45	288.90	198.42	383.71
2005	598.20	169.73	346.51	238.84	428.74
2006	537.74	148.98	315.51	205.04	394.99
2007	332.15	85.90	199.28	121.62	203.14
2008	262.99	70.30	147.54	102.52	198.41
2009	430.69	120.55	263.55	169.16	279.88
2010	738.09	191.31	417.98	288.67	548.76
2011	556.43	137.63	318.68	214.99	401.70

 Table 14: - Annual infiltration Volume with 100% Dam Height

Rock Creek Reclamation District Infiltration Feasibility Study - DRAFT County of Butte October 2023

2012	495.43	133.23	283.04	200.26	370.00
2013	170.47	42.32	101.02	62.11	100.40
2014	525.00	137.07	290.62	213.52	434.20
2015	234.99	64.44	137.07	87.54	176.89
2016	687.46	181.57	390.77	270.66	517.43
2017	560.55	145.55	313.29	228.35	445.53
2018	374.31	102.73	217.33	146.52	264.54
2019	605.71	160.55	337.79	238.35	488.83
2020	256.90	69.24	152.29	90.64	156.12
2021	385.02	110.27	222.45	146.53	263.93
2022	283.83	73.48	157.57	112.47	232.68
2023	516.68	129.74	291.26	207.18	392.01
Annual Avg.	458.75	122.33	262.07	180.27	341.48

Chart 30: Annual Infiltration Volume in all Basins with 100% Dam Height

7.0 AQUIFER ASSESSMENT

The surface and near surface assessments described above indicate a significant potential for groundwater recharge can be realized within the Sand Creek watershed. As part of this initial assessment, Wood Rodgers conducted a review of available data/reports defining underground aquifers and subsurface geology below Sand Creek and down gradient of the potential recharge areas to determine if the underlying geology will likely have the capacity to receive and store the increase infiltration volumes. The review of the subsurface data indicates that permeable material likely exists to depths ranging from 300 feet to 350 feet below ground surface (bgs). Applied water is anticipated to migrate vertically into the subsurface to a depth between 60 to 90 feet, where it is reasonable to anticipate the water will flow horizontally following both the regional dip of the geologic formations, or where saturated, the general groundwater gradient.

The supporting analysis for this aquifer assessment is provided in Appendix C.

8.0 CONCLUSION AND SUMMARY

Five potential groundwater recharges areas were identified within the Sand Creek watershed through evaluations supported by field surveys, including Frequency Domain Electro-Magnetic surveys. The estimated long term maximum infiltration rate was determined to be 0.7 feet/day (0.35 inches/hour). These five recharge areas were evaluated for the historical period of 2000-2023 using rainfall data from the nearest comparable hourly gauge for existing conditions. These same areas were then evaluated with inline dam structures of varying heights, to impound natural runoff for longer periods of time over these areas, in order to increase infiltration. The following table summarizes the average expected infiltration.

	Groundwater Recharge Basin						
Scenario	D1&2	E1	E2	J1	J2		
	Average Annual Infiltrated Volume (acre-feet)						
Baseline	45.63	15.04	23.04	0.66	22.48		
20% Dam Height	33.94	12.8	14.94	19.06	7.11		
40% Dam Height	140.21	26.35	56.85	35.43	42.62		
60% Dam Height	265.35	51.7	116.94	80.19	143		
80% Dam Height	349.18	87.56	194.77	129.93	250.52		
100% Dam Height	458.75	122.33	262.07	180.27	341.48		

Ecological/environmental benefits can be realized by detaining and infiltrating runoff. Qualitatively, if there is an increase in inundation and saturated soils in portions of the project area, there would be an increased opportunity for creation of seasonal wetland and riparian/vegetated areas to grow naturally over time. Subsequently, the increase in newly available seasonal wetlands and riparian habitats would be expected to provide new wildlife corridors, and potentially suitable areas for a wide range of plants and wildlife species. Some ecological/habitat benefits would be provided quickly (such as those for seasonal waterfowl), but most would develop over time as functionality of the new system is repeatable year after year. If a much more in-depth quantitative analysis about specific outcomes in specific areas is required, creating a "Water Budget Analysis" to determine exact locations and potential species composition based on the water budget results is recommended.

Waterfowl habitat benefits are a potential ancillary benefit that may be better realized by configuring outlet structures to further limit water releases in order to maximize ponding, however, these benefits may be limited if higher infiltration rates are realized and ponding areas/times are significantly reduced. It is important to note that if all low-flow runoff is captured to potentially enhance waterfowl conditions upstream of a dam it can reduce water reaching downstream channels and potentially impact existing downstream habitat areas. A more comprehensive analysis that identifies existing habitat would be required to assess the relative benefits and impacts of specific design options. The location of the smaller recharge ponds within the surrounding Sand Creek watershed and their suitability for visually attracting migrating waterfowl (during migration flights) and maintaining populations without extensive food supplies may be limited but would be best assessed by a waterfowl expert during design. Enhancing waterfowl habitat is not expected to change the infiltrative performance.

The installation of inline dam structures is the most effective means of impounding water within the natural terrain features. Within the state of California, small dams are allowed to be constructed without

state oversight if they fall below the jurisdictional size thresholds defined by the Division of Safety of Dams (DSOD). These thresholds allow unlimited volumes of storage if the dam height is below six feet. Once the dam height exceeds six feet, the maximum storage volume that can be stored without triggering DSOD jurisdictional design oversight is 50 acre-feet, up to a dam height of 25 feet. Once the dam height exceeds 25 feet, the maximum volume that can be stored below the jurisdictional threshold is 15 ac-ft.

Given these jurisdictional constraints, the proposed D1&2 basin area, which infiltrates the most water, can be constructed up to a height of approximately 12.1 feet before becoming a jurisdictional dam, which is between the 60% and 80% dam height evaluated. This equates to an annual average recharge of between 265 and 349 ac-ft annually. The E1, E2, and J1 basins never reach the jurisdictional threshold at 100% dam height. The J2 basin reaches 50 ac-ft of storage at elevation 240.5 feet, which is just above the 80% dam height of 14.4 feet evaluated. For the J2 basin area approximately 250 ac-ft of groundwater recharge can be accomplished annually below jurisdictional thresholds. The E2 basin area can infiltrate approximately 262 ac-ft annually with a non-jurisdictional dam height of 14 feet. The following table provides a summary of each basin's surface storage volume with respect to dam height.

	Basin								
	D1&2	D1&2 E1 E2 J1 J2							
Dam Height (ft)		Volume (acre-feet)							
0	0	0	0	0	0				
1	0.02	0.05	0.05	0.2	0.02				
2	0.21	0.27	0.34	0.63	0.11				
3	0.77	0.91	0.8	1.42	0.29				
4	1.91	2.02	1.55	2.95	0.54				
5	3.71	3.91	3.02	5.5	1.05				
6	6.38	6.86	5.46	9.24	1.94				
7	10.71	10.65	8.7	13.88	3.45				

8	16.16	15.17	12.7	19.44	6.23
9	22.77		17.57	25.87	10.06
10	30.51		23.06	32.93	15.2
11	39.31		28.76		21.7
12	48.37		34.7		29.01
13	57.7		41.03		36.86
14	67.52		47.88		45.37
15	78.18				54.45
16	89.68				63.93
17	102.14				73.69
18	115				83.74

WOOD RODGER

The D1&2 and J2 basins infiltrate the most water. Given the evaluated rainfall period, it appears that the watershed can generate sufficient runoff to realize the scenarios that were evaluated. The length and height of the dam required for the D1&2 basin will require more cost to realize the infiltrative benefits, with a longer dam length, along an existing paved roadway alignment. The costs of construction go up dramatically once the dam structure becomes jurisdictional.

If further analysis is justified, based on the findings of this report, Wood Rodgers recommends evaluating the J2 area first, perhaps in combination with the J1 area, then the D1&2 area, and then the E2 and E1 areas. With more detailed assessments of environmental constraints, historical preservation, water rights and construction costs, the benefits of constructing aquifer recharge facilities can be better understood and justified to apply for grant funding and implementation in the future.

A streambed alteration agreement is typically required to be processed and completed through the California Department of Fish and Wildlife for any structure constructed within any streambed (ephemeral or perennial) in California, to ensure earthwork and erosion protection measures occur properly without introducing sediment into downstream receiving waters and negatively impacting aquatic species.

The Sand Creek system is outside of the jurisdiction of the Central Valley Flood Protection Board. The State Water Resources Control Board and its regional arm will require a permit to allow recharging groundwater from surface water sources related to the State's adjudication of water rights.

Most of the proposed recharge sites are within a conservation easement held by the Natural Resources Conservation Service and will require extensive coordination with this agency and the property owner to ensure compliance with the intent of the easement or agreement that benefits will outweigh impacts. A CONTRACTOR AND A CONTRACT OF A

2

J:Jobs\8874_RCRD\8874001_RockSand\GIS\ArcGISPro\Infiltratation_Analysis\8780_ButteCounty\8780_ButteCounty.aprx 8/25/2023 1:10 PM bbhatta

FIGURE 2

SAND CREEK WATERSHED

INFILTRATION ANALYSIS IN FIVE RECHARGE ZONES BUTTE, CALIFORNIA AUGUST 2023

Legend

J:\Jobs\8874_RCRD\8874001_RockSand\GIS\ArcGISPro\Infiltratation_Analysis\8780_ButteCounty\8780_ButteCounty.aprx 9/18/2023 11:54 AM bbhatta

FIGURE 3

FIRM MAP

INFILTRATION ANALYSIS IN FIVE RECHARGE ZONES BUTTE, CALIFORNIA SEPTEMBER 2023

Legend

1% Annual Chance Flood Hazard

J:Jobs\8874_RCRD\8874001_RockSand\GIS\ArcGISPro\Infiltratation_Analysis\8780_ButteCounty\8780_ButteCounty.aprx 9/18/2023 11:59 AM bbhatta

Photos collected 06/06/2023

Photo Location

World Boundaries and Places: Esri, HERE, Garmin, iPC

J:\Jobs\8874_RCRD\8874001_RockSand\GIS\ArcGISPro\Infiltratation_Analysis\8780_ButteCounty\8780_ButteCounty.aprx 9/18/2023 12:05 PM bbhatta

J:Jobs\8874_RCRD\8874001_RockSand\GIS\ArcGISPro\Infiltratation_Analysis\8780_ButteCounty\8780_ButteCounty.aprx 9/19/2023 8:27 AM bbhatta

FIGURE 7

ASSUMED DAM LOCATIONS AND INUNDATED AREAS

INFILTRATION ANALYSIS IN FIVE RECHARGE ZONES

BUTTE, CALIFORNIA SEPTEMBER 2023

APPENDIX A

Sand Creek Geophysical Characterization Report September 15, 2023

Prepared by: GeoSystems Analysis, Inc. 3393 N Dodge Blvd Tucson, AZ 85716 Prepared for: Wood Rodgers, Inc. 3301 C St Building 100-B Sacramento, CA 95816

DOCUMENT CONTROL SUMMARY

Title:	Sand Creek Geophysical Characterization				
Client Company:	Wood Rodgers				
Client Contact:	Mike Nowlan				
Contract Number:	Subcontract Agreement dated 5/4/2023				
Status:	Final				
GeoSystems Analysis Job #:	2237				
Project Manager:	Lindsey Bunting				
Author(s):	Meg Buchanan, Lindsey Bunting				
Revision Number:	2				
Notes:	Final				
Date:	6/15/2023				
Checked By:	ММ				
Issued By:	LB				
Distribution (Number of Copies):	Client	Other	GSA Library		
	1				

This document may contain confidential or privileged information and is intended for the sole use of the person(s) to whom it is addressed. This document is copyrighted. GeoSystems *Analysis*, Inc. is not liable if this document is altered without its written consent. This document is and shall remain the property of GeoSystems *Analysis*, Inc. It may only be used for the purposes for which it was commissioned and in accordance with the terms of the contract.

TABLE OF CONTENTS

UMENT CONTROL SUMMARY	i
LE OF CONTENTS	i
OF TABLES	i
OF FIGURES	i
OF APPENDICES	i
INTRODUCTION	1
BACKGROUND	3
Conceptual Model	3
Site Geology	4
Soil Properties	7
Groundwater Elevation and Aquifer Properties	.11
GEOPHYSICAL INTERPRETATION	.14
RECOMMENDATIONS	.18
REFERENCES	.20
	JMENT CONTROL SUMMARY .E OF CONTENTS

LIST OF TABLES

Table 1.	Estimated	recharge ba	sin area	required :	for MAR	
		0		1		

LIST OF FIGURES

Figure 1. Sand Creek Investigation Area	2
Figure 2. Surface geology	6
Figure 3. Soil map units and presence of restrictive layer	9
Figure 4. SAGBI recharge suitability index and estimated soil permeability	10
Figure 5. Estimated October 2022 depth to groundwater	12
Figure 6. Estimated October 2022 groundwater elevation	13
Figure 7. Geophysical survey apparent conductivity from 15-22 ft bgs	16
Figure 8. AEM survey data	17

LIST OF APPENDICES

Appendix A. Collier Geophysics FDEM Survey Report

Appendix B. Well Driller Geologic Logs

1.0 INTRODUCTION

GeoSystems Analysis, Inc. (GSA) was contracted by Wood Rodgers, Inc. (Wood Rodgers) to provide project support in the Sand Creek potential flood mitigation area located near Chico, CA for the Rock Creek Reclamation District (RCRD). Due to surface disturbance constraints associated with the NRCS Conservation Easements located within the investigation area, the scope of the field investigation was modified from the initially proposed test pitting and infiltration testing approach to instead utilize low disturbance geophysical survey techniques. The geophysical survey was used as a preliminary screening tool to identify areas within the proposed potential detention basin areas provided by RCRD that appear to have shallow subsurface materials favorable for stormwater capture and recharge.

The RCRD proposed potential detention basin areas and FDEM survey area are shown in Figure 1. FDEM survey locations were designed to encompass RCRD's potential detention basin areas as well as major drainages of Sand Creek. The geophysical field investigation was conducted by Collier Geophysics (Collier) from June 27-29, 2023 and utilized a hand-carried frequency-domain electromagnetic (FDEM) survey approach. The FDEM survey was designed to provide a preliminary assessment of surface soil and vadose zone conditions up to approximately 20 feet below ground surface (ft bgs). Results of the geophysical survey as well as publicly available soils data were used to estimate potential infiltration rates and identify areas to target for further investigation as potential stormwater storage and recharge basins.

Section 2.0 of this report provides background information including a conceptual model for successful managed aquifer recharge (MAR), site geology, soil properties, and groundwater conditions and aquifer properties. Section 3.0 provides an interpretation of the geophysical conditions, and Section 4.0 provides recommendations for areas of further investigation as stormwater recharge facilities as well as potential design considerations.

Innovative Solutions

Figure 1. Sand Creek investigation area

2.0 BACKGROUND

2.1 Conceptual Model

MAR is the intentional harvesting and infiltrating of a water source at the surface (e.g. stormwater runoff) to recharge depleted aquifer storage, and can be an essential tool for achieving compliance with the California Sustainable Groundwater Management Act (SGMA). MAR can include the use of injection wells (e.g. aquifer storage and recovery wells), surface spreading infiltration (i.e. in-channel structures, recharge basins), Flood MAR (where agricultural fields are flooded), and low impact development (decreasing impermeable surfaces, using passive rainwater harvesting). The focus of this study is the capture of stormwater runoff for surface spreading MAR, particularly through the use of in-channel detention structures to detain and infiltrate water in basins and surface water channels.

The suitability of a site for surface spreading MAR is highly dependent on a number of variables including the distribution and infiltration properties of near-surface and deeper vadose zone sediments, available storage and recharged water recovery, water quality, and conveyance systems (if needed) to deliver water to the spreading area.

In most alluvial basins, such as the study area, the near-surface and subsurface sediments consist of variable and inter-bedded layers resulting from changing fluvial processes over the basin's depositional history. The hydraulic capacity of the vadose zone is ultimately determined by the lateral extent and vertical inter-connectivity of the subsurface sedimentary layers. Groundwater recharge site investigations must therefore determine whether infiltration rates of near surface materials are sufficiently high to meet project needs and whether laterally extensive low-permeability layers exist within the shallow vadose zone (Milczarek et al., 2003). Soil infiltration rates and permeability are correlated to soil texture and bulk density, with coarser textured soils having greater permeability and finer textured soils having lower permeability.

Site suitability for MAR is also dependent on available vadose zone storage, which is a function of the depth to groundwater, and the hydrogeologic properties of the subsurface materials. Sufficient vadose zone storage must be available to prevent mounding to shallow depths below the basin, which can result in decreased infiltration rates. Vadose zone and aquifer properties will also determine how quickly mounding dissipates to allow for continued recharge. Designs for stormwater capture and MAR facilities must also consider stormwater detention and sedimentation structures to reduce surface clogging that can occur in detention basins which will reduce infiltration and groundwater recharge rates.

2.2 Site Geology

The project area is located within the Great Central Valley of California which is an alluvial plain approximately 50 miles wide and 400 miles long in the central part of California. The northern portion, where the study area falls, is within the Sacramento Valley and drained by the Sacramento River. The Great Valley consists of an elongated trough in which sediments have been deposited since the Jurassic period. The majority of rocks and deposits in this area are sedimentary, with ages ranging from upper Jurassic (154-135 million years ago) to recent. Surface geology in Butte County, California is comprised of a variety of geologic units, including predominantly quaternary alluvium and marine deposits of Pleistocene to Holocene age, mesozoic granitic rocks, tertiary pyroclastic and volcanic mudflow deposits, and 18 other geologic units (USGS, https://mrdata.usgs.gov/geology/state/fips-unit.php?code=f06007).

Figure 2 shows the surface geology at the Sand Creek site (Saucedo and Wagner, 1992). Surficial geologic units in this area include the Pleistocene Modesto, Riverbank and Red Bluff formations, with the Pliocene Tuscan Formation units underlying these below the Sand Creek site and exposed at its eastern edge. The Tuscan Formation (P_{tu}) east of the investigation area is described by Helley and Harwood (1985) as comprised of interbedded lahars, volcanic conglomerate, volcanic sandstone, and siltstone. This formation is the primary hydrogeologic unit and groundwater source in the Vina Subbasin of the larger Sacramento Valley Groundwater Basin (Geosyntec Consultants, 2021). The "B" unit of the Tuscan formation present at the Sand Creek site is approximately 425 feet thick, with conglomerate layers approximately 50 feet thick (Helley and Harwood, 1985). It contains fresh groundwater, as confirmed by a California Department of Water Resources (CDWR) analysis of geophysical and water quality parameters in the early 2000s (CDWR, 2014).

The Red Bluff Formation (Q_{rb}), which underlies a portion of the geophysical survey area polygons located in high elevation upland areas, contains well-weathered, bright red, sandy gravel, sand, and silt, is between 3 and 33 feet thick, and may contain groundwater, indicating a perched aquifer (Helley and Harwood, 1985, CDWR, 2014). The Red Bluff consists of a gravel sediment above a rock pediment (Helley and Harwood, 1985). It overlies and is derived from the Tuscan Formation on the eastern edge of the valley and underlies the Riverbank and Modesto formations (CDWR, 2014). Geosyntec (2021) describes Red Bluff deposits as cemented and not transmitting water.

The Riverbank Formation (Q_r) , which does not appear to coincide with any geophysical survey areas, is composed of reddish gravel, sand, and silt and forms alluvial terraces and fans (Helley and Harwood, 1985). Near the investigation area, the Riverbank overlies the Tuscan and Red Bluff formation and underlies the Modesto Formation. It may contain small amounts of clay

GeoSystems Analysis, Inc.

Basin\Active Projects\Wood Rodgers\Rock and Sand Creek Flood Mitigation\Report\2237 Sand Creek Geophysical Characterization Report.docx

(Helley and Harwood, 1985). Groundwater may be present under unconfined conditions (CDWR, 2014) and water-bearing capacity is limited by deposit thickness, although deposits range from poorly to highly permeable and this unit supplies groundwater to some shallow wells in the region (Geosyntec, 2021).

The Modesto Formation (Q_m), which underlies all geophysical survey areas, is the youngest of the Pleistocene alluviums, forming stream deposits of gravelly sand, silt, and clay (Helley and Harwood, 1985). It includes an upper layer, present in the investigation area, which forms low-elevation terraces and alluvial fans and is generally less than 10 feet thick at valley edges (Helley and Harwood, 1985, CDWR, 2014). Modesto Formation deposits are considered to be moderately to highly permeable (Geosyntec Consultants, 2021).

2.3 Soil Properties

Soils data for the investigation area were obtained from the U.S. Natural Resource Conservation Service's Web Soil Survey (NRCS, 2023). Figure 3 shows soil map units occurring within the investigation area as well as presence of a restrictive layer in the shallow subsurface. Geophysical survey areas in the downstream portion of the Sand Creek channel and southern lower fork fell predominantly within the Redsluff gravelly loam soil map unit (Figure 3), which is characterized by moderately well drained gravelly loam materials with a gravelly clay loam horizon occurring from 5-12 inches bgs and no observed depths to a restrictive layer. Most of the northern upper fork of Sand Creek falls within the Wafap-Hamslough soil map unit. These soils are characterized by shallow gravelly loam materials overlying cobbly to extremely cobbly clay loams with restrictive layers occurring between 20-40 inches bgs. Redtough-Redswale map units occurred in the upper fan terrace areas adjacent to channel systems and are characterized by loam to very cobbly loams overlying cemented gravelly material at 10-20 inches bgs. Anita gravelly duripan map units underlie a subset of the upstream investigation areas in fan terraces adjacent upper Sand Creek tributaries. This map unit is characterized by gravelly clay overlying cemented gravelly material between 10-20 inches bgs. Based on NRCS soils data for the area, locations overlying the Redsluff gravelly loam soil map units are most likely to have physical properties favorable for groundwater recharge due to the absence of a restrictive layer in the top 80 inches.

Figure 4 shows the Soil Agricultural Groundwater Banking Index (SAGBI) which provides a qualitative estimate of suitability for groundwater recharge on agricultural land. This index is based on five factors critical to success including deep percolation, root zone residence time, topography, chemical limitations, and soil surface condition. The SAGBI for the area indicates good to very poor suitability for groundwater recharge (Figure 4). FDEM investigation areas falling within the downstream portion of the Sand Creek channel investigation area and southern tributary of Sand Creek had good ratings; upstream areas and those in the northern tributary of Sand Creek had poor to very poor ratings.

Figure 4 also shows near-surface soil permeability estimates determined from depth-weighted harmonic mean estimated saturated hydraulic conductivity (K_{sat}) calculated from the U.S. Natural Resource Conservation Service soil survey map unit horizon K_{sat} ranges (NRCS, 2023). GSA's experience is that NRCS-estimated soil permeability rates are typically 5X to 10X greater than the long-term potential infiltration at the near-surface. As a result, the NRCS K_{sat} values were reduced by a factor of 10 to approximate achievable, long-term infiltration rates for groundwater recharge operations. Multiple soil units exist in the study area, and therefore the mean K_{sat} weighting was

GeoSystems Analysis, Inc.

Basin\Active Projects\Wood Rodgers\Rock and Sand Creek Flood Mitigation\Report\2237 Sand Creek Geophysical Characterization Report.docx

based on the area and depth of each soil unit within the study area. These data indicate that most of the study area has expected near-surface infiltration rates of less than 0.2 feet/day, with other areas primarily in the Sand Creek channel that could be in excess of 0.6 feet/day (Figure 4).

Driller logs for nearby wells shown on Figure 2 and presented in Appendix B, also indicate the presence of interbedded hardpan and restrictive layers occurring at depths as shallow as 2 ft bgs (WCR-114310, WCR-518070). With the exception of WCR-752066 and WCR-011330, all nearby wells with available drill logs noted cemented material or rock within the top 10 ft.

Areas with limited expected infiltration rates primarily have hard pan or restrictive layers within 0-6.5 ft bgs (Figure 3). Depending on the stormwater capture volumes, basins with hardpan layers may still be suitable for recharge, if the layer is deep enough or can be broken up via excavation or deep ripping. Conversely, potential basin areas with shallow (i.e. <10 ft bgs) restrictive layers may be suitable for temporary storage, and recovery via drains for gradual discharge into more favorable recharge areas downstream.

innovative Solutions

Figure 3. Soil map units and presence of restrictive layer

Figure 4. SAGBI recharge suitability index and estimated soil permeability

2.4 Groundwater Elevation and Aquifer Properties

The ephemeral Sand Creek drainage falls within the Vina North Management Area of the Vina Groundwater Sustainability Agency, and the investigation area overlies the Tuscan aquifer. To assess the available storage within the vadose zone and groundwater flow characteristics, the depth and flow direction of groundwater below the study area were estimated from California Department of Water Resources (CDWR) October 2022 depth to groundwater and groundwater elevation data (Figure 5, Figure 6). Depth to water and elevation contours indicate that groundwater occurs between 60 and 110 feet below ground surface and groundwater elevation between 130 and 160 feet above mean sea level. These data indicate that in the absence of perched water, the study area should have sufficient vadose zone storage for stormwater capture and MAR.

A stable isotope study conducted in the area indicated that groundwater recharge from precipitation occurs within the Valley Floor area and the ephemeral streams traversing the Lower Foothills, where the study area is located (Brown and Caldwell, 2017; Geosyntec Consultants, 2021). Rainfall in this area percolates directly into the Tuscan Formation at the outcrop or percolates into small alluvial fans or other sedimentary deposits in the area. This also supports the potential for increased groundwater recharge through the recent alluvial deposits located in the Sand Creek ephemeral drainages.

The Tuscan Formation is the main hydrogeologic unit and source of groundwater in the area, is comprised of volcanic sediments, and occurs under unconfined and semi-confined conditions and varying vertical conductivity (Geosyntec Consultants, 2021). Ranges in estimates of Lower Tuscan aquifer parameters for three sites in the Vina Subbasin of the Sacramento Valley Basin (Geosyntec Consultants, 2021), in which the Sand Creek site is located were:

- Specific yield: 5.9 7.1 percent
- Transmissivity: 2,322 23,650 square feet/day
- Horizontal hydraulic conductivity: 66 5,712 feet/day

novative Solutions

Figure 5. Estimated October 2022 depth to groundwater

Innovative Solutions

Figure 6. Estimated October 2022 groundwater elevation

3.0 GEOPHYSICAL INTERPRETATION

The geophysical survey report prepared by Collier is provided in Appendix A and provides a detailed discussion of survey methods and results. Collier mapped the apparent conductivity results for three coil depths, which represent increasing subsurface depth ranges of 5-7 ft bgs (coil 1), 9-14 ft bgs (coil 2), and 15-22 ft bgs (coil 3) (Appendix A). Lower conductivity areas are typically representative of coarse-grained sand and gravel, but can also indicate the presence of conglomerate, igneous and metamorphic rock, or other consolidated sedimentary materials. Higher conductivity areas are indicative of fine-grained clay materials but can also indicate increased water and salt content. Because of these uncertainties associated with geophysical surveys, confirmation testing via test pitting and/or an exploratory borehole investigation will be an essential step in the site screening process.

Geophysical survey results indicate that the extent of coarse-grained (low conductivity) sediments decreases with increasing depth below ground surface (Appendix A). As a result, low conductivity sediments are extensive within the top 5-7 ft bgs, decrease by 9-14 ft bgs, with a further decrease in extent from 15-22 ft bgs (Appendix A). Based on adjacent drill logs and area soils data (Section 2.3), this is likely a result of encountering finer-grained and potentially cemented materials at deeper depths. Areas with low conductivity values at the deepest investigation depth (15-22 ft bgs) also had low conductivity values above this depth (5-7 and 9-14 ft bgs) suggesting that material properties in these areas are most favorable for aquifer recharge.

Figure 7 shows FDEM results from 15-22 ft bgs. The FDEM 15-22 ft level results were selected for comparison to the shallow (0-6.5 ft bgs) soil survey results as the lower limit for estimated conductivity observed in the FDEM data. Potential detention basins A through F lie within the portion of Sand Creek with greater estimated K_{sat} values of 0.6-0.8 ft/day (Figure 4) and comprised of the Redsluff gravelly loam soil map unit, which is known to have deeper soils lacking a restrictive layer in the top several feet (Section 2.3). Of the potential basins occurring within the Redsluff soil map unit, basins E1 and E2 had the lowest apparent conductivity (coarsest material) values at 15-22 ft bgs. Basins A through D and basin F showed slightly higher, though similar conductivities at each depth (Appendix B). Although potential detention basins J1 and J2 fall outside of the Redsluff gravelly loam, portions of the basins were also identified as having low conductivity (coarse-grained materials) to a depth of up to 22 ft bgs. The remaining basins east of basins A through F, with the exception of basin O, showed much higher estimated conductivity values, indicating finer grained materials at all FDEM survey levels.

GeoSystems Analysis, Inc.

Basin\Active Projects\Wood Rodgers\Rock and Sand Creek Flood Mitigation\Report\2237 Sand Creek Geophysical Characterization Report.docx

The FDEM data was also compared to lower resolution geophysical data from the California Airborne Electromagnetic (AEM) Surveys (CDWR, 2023). The AEM data interpretations were downloaded from the CDWR SGMA Data Viewer

(https://sgma.water.ca.gov/webgis/?appid=SGMADataViewer#hcm) for the study area. Figure 8 shows the Hydrologic Conceptual Model for the average percent coarse grained material within 0-50 ft bgs, along the AEM survey lines within the study area. The average percent coarse-grained material estimates are based on integrating the AEM data with well logs in the general area. These data predict that basins A through D have greater percent coarse materials (30-40%) than basins to the east of basins F and J (20-30%) in the 0 to 50 ft bgs depth interval. The AEM flight path did not cover basins E1/E2 and J1/J2, so comparison between AEM and FDEM data is not possible for these potential detention basins. Where available, these data are generally consistent with the higher resolution FDEM data.

Innovative Solutions

Figure 7. Geophysical survey apparent conductivity from 15-22 ft bgs

Innovative Solutions

Figure 8. AEM survey data

4.0 RECOMMENDATIONS

Based on careful review of findings from the geophysical survey and review of publicly available geologic and soils data, GSA recommends the following potential detention basin areas be considered for further evaluation for suitability as stormwater capture and recharge locations:

- E1 and E2 (greater K_{sat} and estimated coarse-grained materials)
- J1 and J2 (greater estimated coarse-grained materials)

Basins A-D, F, and O may also be suitable for investigation as secondary options in the event that greater total storage is required and/or confirmation testing indicates unsuitable vadose zone properties at E1/E2 and J1/J2. In ephemeral drainages such as Sand Creek, the amount of water available for capture and recharge is highly dependent on rainfall-runoff dynamics in the contributing watershed. MAR facility design must be guided by water availability and seasonality (e.g. months per year of water availability and estimated average, min and max flow volumes), the amount and duration of planned detention, as well as surface infiltration rates, and vadose zone and aquifer properties. If the infiltration rates are limited, or the vadose zone is limited in thickness and total storage due to restrictive layers, larger basins or treatment (i.e. ripping) may need to be designed to meet project objectives.

Because the basins to the east of the E and J basins generally appear to be less favorable to groundwater recharge, these areas could be used for upstream retention structures to capture and serve as sedimentation basins that slowly meter water to improve the water quality reaching downstream detention basins. The upstream basins essentially become sacrificial, while increasing water residence time in the channel and downstream basins which will increase overall recharge and reduce maintenance required in downstream basins to remove accumulated sediment.

While no estimate of potential capture volumes is yet available, we used a volume range of 50 to 300 acre feet per year (afa) as an example to illustrate the required basin size(s) required under different estimated infiltration rates. Depending on the estimated recharge volumes, and assuming an infiltration rate of 0.2 to 0.7 ft/day, recharge occurring over two months of the year could be achieved with overall basin sizes between approximately 1 to 25 acres in size (Table 1). Note that this estimate does not include additional recharge that will occur due to increased channel infiltration or the retention characteristics needed to retain

water for two months. Based on GSA's experience, increased channel infiltration can be as high as 50% of the total volume recharged in stormwater capture systems.

Estimated Periods of Water Availability	Desired Average Annual Recharge Rates (AFA)	Estimated Basin Infiltration Rate (Feet/day)	Acres of Basins Needed
2 months/year	50	0.2	4.2
	50	0.7	1.2
	400	0.2	8.3
	100	0.7	2.4
	450	0.2	12.4
	150	0.7	3.6
	000	0.2	16.5
	200	0.7	4.7
	200	0.2	24.7
	300	0.7	7.1

Table 1. Estimated recharge basin area required for MAR

Finally, geophysical investigations are very useful as a screening tool but are subject to numerous constraints which can result in potentially inaccurate results, such as the effects of high water content, high salt content, or consolidated material on predictions of unconsolidated material properties. As a result, physical investigations in the recommended potential detention basin areas to confirm the estimated material properties from the geophysical survey are necessary prior to conducting any further design work. Physical investigations should include: 1) a near-surface (i.e. test pitting) characterization with surface infiltration testing to better approximate the range in effective infiltration rates, and 2) a borehole investigation to determine if any continuous restrictive layers are present which may constrain percolation of recharged water to the aquifer, or result in mounding which limits recharge project effectiveness and/or results in unacceptable daylighting elsewhere in the channel.

More detailed information on subsurface and aquifer properties, in addition to information on channel flow dynamics (frequency, duration, discharge volumes) will allow for improved stormwater capture and MAR facility design.

5.0 REFERENCES

- Brown and Caldwell, 2013. Lower Tuscan Aquifer Monitoring, Recharge, and Data Management Project. Final Report. Prepared for Butte County Department of Water and Resource Conservation May 21, 2013.
- Brown and Caldwell, 2017. Stable Isotope Recharge Study. Final Report. Prepared for Butte County Department of Water and Resource Conservation.
- CDWR See California Department of Water Resources
- California Department of Water Resources, 2014. Geology of the Northern Sacramento Valley, California. June 2014, updated September 22, 2014.
- California Department of Water Resources, 2023. California Airborne Electromagnetic Surveys, Sacramento Valley Groundwater Subbasins, Northern Portion, and SGMA Data Viewer (https://sgma.water.ca.gov/webgis/?appid=SGMADataViewer#hcm).
- GEI, 2018. Evaluation of Restoration and Recharge within the Butte County Groundwater Basins. Prepared by GEI Consultants, Inc., Davids Engineering, Inc., ERA Economics and Land IQ for Butte County, CA. January, 2018.
- Geosyntec Consultants, 2021. Groundwater Sustainability Plan: Vina Groundwater Subbasin. 226 pp.
- Helley, E.J. and D.S. Harwood, 1985. Geologic Map of the Late Cenozoic Deposits of the Sacramento Valley and Northern Sierra Foothills, California. United States Geological Survey, Miscellaneous Field Studies Map MF-1790.
- Milczarek, M., Rice, R.C., and Hammermeister, D.P., 2003. Integrated Use of Vadose Zone Characterization Methods to Evaluate Artificial Groundwater Recharge Sites. Presented at the 11th Biennial Symposium on Groundwater Recharge, Phoenix AZ, June 5-7, 2003.
- NRCS See United States Department of Agriculture, Natural Resources Conservation Service
- Saucedo, G.J, and D.L. Wagner, 1992. Geologic Map of the Chico Quadrangle, California, 1:250000. California Division of Mines and Geology. https://www.conservation.ca.gov/cgs/rgm/maps

United States Department of Agriculture, Natural Resources Conservation Service, 2023. Web Soil Survey. http://websoilsurvey.sc.egov.usda.gov/.

APPENDIX A

Collier Geophysics FDEM Survey Report

GeoSystems Analysis, Inc.

 $Basin\Active\ Projects\Wood\ Rodgers\Rock\ and\ Sand\ Creek\ Flood\ Mitigation\Report\2237\ Sand\ Creek\ Geophysical\ Characterization\ Report.docx$

1205 Sam Bass Rd | Round Rock, Tx 78613 | (254) 968-8725

July 19, 2023

To: Lindsey Bunting Project Scientist

> Geosystems Analysis, Inc. Tuscan, AZ

VIA Email: lindsey@gsanalysis.com

RE: Geophysical Letter Report – FDEM Sand Creek, CA | Project #230212 FDEM Geophysical Survey Chico, CA

Collier Geophysics, LLC. (Collier) is pleased to provide GeoSystems Analysis, Inc. (GeoSystems) with this letter report summarizing the results of a frequency-domain electromagnetic (FDEM) survey located off Golden State Hwy in Chico, CA. The main objective of this geophysical investigation was to assist GeoSystems in identifying areas with higher recharge potential based on soil grain size and potential permeability inferred from subsurface conductivity.

The survey was conducted from June 27th to June 29th. Collier Geophysicist Josh Morrison led the survey. The following report presents results from the geophysical investigation and summarizes the site conditions, field methods, data acquisition, and interpretation procedures.

Site Conditions

The 1,000-acre area of investigation is located near the intersection of Renkow Road (Rd) and Meridian Rd in Chico, CA. **Figure 1** shows the general area of the geophysical project. The weather during data collection was sunny, with daily high temperatures around 100 degrees (Fahrenheit). The brush in parts of the survey site was dense and chest-high. The topography was generally flat with surface soils mostly dry. **Inset 1** shows photographs of the site field conditions. The approximate surface elevation of the site ranged from 180-215 feet (ft) above mean sea level (MSL).

Inset 1: Photographs of site conditions and field work.

Surface Geology

The project area is located in the Great Valley province of California. This region contains volcanic rock, terrace deposits, as well as marine and nonmarine sedimentary rocks. The survey site lies on deposits described as Pleistocene-age sandstone, shale, and gravel deposits; mostly loosely consolidated (QPc). Pleistocene-Holocene age unconsolidated sedimentary rock, including alluvium, and terrace deposits (Q) is located to the west of the project area. East of the project area lies Tertiary age volcanic rock (Tvp and Tv) as shown in **Figure 2** (California Department of Conservation, California Geological Survey).

Method Overview

The frequency domain electromagnetic survey (FDEM) is used to characterize the subsurface based on conductivity. An FDEM instrument consists of at least one pair of transmitter and receiver coils. A primary magnetic field of a constant frequency is generated using an alternating current in the transmitter coil, and a secondary magnetic field is detected in the receiving coil due to the interaction of the primary field with the subsurface.

The FDEM instrument allows for simultaneous measurements of the secondary magnetic field's quadrature components. The quadrature component is primarily sensitive to the electrical conductivity of subsurface materials due to changes in lithology, moisture content, and/or fines (clay) content. The quadrature response is calibrated and measured as apparent bulk conductivity in millisiemens per meter (mS/m); it is referred to as the conductivity measurement. Electrical resistivity is the inverse of conductivity. Therefore, knowing the conductivity of the subsurface allows an understanding of the resistivity of the subsurface as well. **Inset 2** is a chart that shows the general range of conductivity / resistivity of various soil and rock types.

Inset 2: Chart showing conductivity/resistivity of various soil and rock types from Sikandar, 2009.

Data Acquisition

For this project data was collected using a CMD-Explorer, which is a multi-coil FDEM conductivity meter manufactured by GF Instruments. The instrument consists of a boom with three coil separations of 1.48 m (4.86 ft), 2.92 m (9.58 ft), and 4.49 m (14.73 ft), corresponding to approximate depths of investigation up to 2.2 m (7.2 ft), 4.2 m (13.8 ft), and 6.7 m (22.0 ft), respectively. The FDEM instrument was carried using a neck sling and a GPS mounting backpack. The depth listed for each coil is the approximate depth achievable by the individual coil but not confirmed for this survey.

Data were recorded continuously at a sample rate of 10 Hz (10 measurements per second). A Juniper Geode GPS unit capable of sub-meter precision was used for positioning at a sample rate of 1 Hz. For each record, the apparent conductivity and the in-phase amplitude are stored, comprising six measurements for each record.

The data was acquired along the creek bed within the area of investigation as well as targeted polygons areas. Data inside the polygons were acquired in parallel line paths, spaced approximately 100 feet apart, as shown in **Figure 1**. Obstructions, fences, inaccessible property, and surface features that cause interference were avoided when possible. Data acquisition on a small portion of one of the polygons and creek bed on the west side of the survey was not acquired due to property access.
Data Processing

Raw FDEM data were exported in tabular format using CMD Data Transfer, version 1.6.2, by GF Instruments. Surface locations for each measurement are interpolated for each record from GPS positions using the data transfer software. The data were then processed using Geosoft Oasis Montaj, version 2022.2, which is a processing and data visualization software suite used to analyze geophysical data sets. The data were then filtered to remove erroneous spikes and to mitigate noise from cultural features such as overhead powerlines. The filtered data for each coil were gridded using a minimum curvature method for contouring and presentation of the data.

Results and Discussion

The apparent conductivity (mS/m) results from the FDEM data were gridded and contoured with Golden Software's Surfer contouring program. **Figures 3, 4, and 5** present the conductivity data as two-dimensional (2D) contour maps for each of the coil separations 1-3, respectively. The conductivity data for the site were contoured using a range of 15 mS/m to 100 mS/m. While there were some outliers for this data range it captures a majority of the data from the site. In **Figures 3, 4, and 5**, the conductivity results are color-mapped with cool colors representing low bulk conductivities and warm colors representing high bulk conductivities. The lower conductivities are interpreted to potentially represent sands and sandy clays grading to finer grained materials (silts, clays, and shales) as the conductivity values increase. The lower conductivity areas (15mS/m to 25 mS/m – blue colors) are interpreted to be coarser grained soils that are potentially permeable.

The coil 1 data in **Figure 3** (estimated depth of investigation 5-7 feet) depicts some areas of lower apparent conductivity values (blue colors) present in portions of Areas 1, 2, 3, 4, 5, 6, 8, and 11 of the survey site. Several portions of the creek bed circled and marked as Areas A, B, C, D and E, also show the presence of these lower conductivity values. The majority of Areas 4, 6, 7, 9, and 10 show overall higher apparent conductivity values for all three coil separations. This is interpreted to be due to the presence of lower sand and higher fines content at these locations and depths.

The coil 2 data in **Figure 4** (estimated depth of investigation 9-14 feet) continues to depict some lower apparent conductivity values in portions of Areas 1, 2, 3, 4, 5, 6, 8, and 11. Similarly to the coil 1 data, the creek bed data from coil 2 shows relatively low conductivity values in some portions of the circled areas marked A, B, C, D and E.

Generally, the data from coil 3 in **Figure 5** (estimated depth of investigation 15-22 feet) shows an increase in conductivity, signifying increasing fine-grained materials or potentially moisture at the depth. However, limited portions of Areas 2, 3, 6, and 11 continue to show lower conductivity values and likely represent areas of coarser grained materials at depth. With the exception of Area E, the selected areas of the creek bed from **Figure 3** and **Figure 4** no longer show the presence of lower conductivity values in the deeper coil 3 data.

Based on the data from all 3 coils, it is interpreted that portions of Areas 1, 2, 3, 5, 6, 8, and 11 as well as portions of the creek bed in Areas A, B, C, D and E may have the potential to contain zones of permeable soils due to the presence of relatively lower conductivity zones (<25 mS/m - blue colors). Portions of Areas 2, 3, 11, and E appear to have the highest potential for more permeable soils due to the relative depth and lateral extent of relatively lower conductivity material present in these areas. Additionally, there is one smaller portion of Area 6 on the southwestern side that exhibits low conductivity in all three coil separations and may also have a high potential for the presence of permeable soils. These interpretations are based on the relative change in conductivity at the site. Therefore, it is recommended that select soil borings be placed in areas of interest and compared to the conductivity data for confirmation and a refinement of this interpretation.

Closure

The FDEM geophysical investigation in Butte County near Chico, CA was used to generate 2D plan view maps of apparent conductivity at three different depth ranges. The collected data for this investigation shows relative changes in conductivity, interpreted to be related to changes in the amount of fine- and coarse-grained materials in the near subsurface. The lower conductive areas (< 25 mS/m - blue colors) as presented in **Figures 3**, **4**, **and 5** may have higher potential for permeability based on the interpreted presence of coarser grained materials at these locations and depths.

Overall, the quality of the data yields a high degree of confidence in the results obtained and presented in this report. However, like any non-intrusive investigation method, FDEM mapping requires the subjective interpretation of indirect measurements and therefore an inherent margin of error is unavoidable. Our methods used for data acquisition and interpretation are as complete as is reasonably possible, and we believe them to be a reasonable representation of the subsurface conditions. Due to the subjective nature of any type of interpretation, we cannot guarantee that our results are accurate in all areas or that all subsurface features have been detected. We suggest that key features identified by this survey be confirmed by selective in-situ methods before decisions are based on our findings.

If you have any questions regarding the field procedures, data analysis, or the interpretive results presented in this report, please do not hesitate to contact us. We appreciate working with you and look forward to providing GeoSystems with geophysical services in the future.

Sincerely,

Collier Geophysics, LLC

osh Morrison

Joshua Morrison Geophysicist

Dauglie E. Jaymer

Doug Laymon, P.G. Principal Geophysicist

FDEM Sand Creek, CA Project # 230212 July 19, 2023

Figures

Butte County FDEM Survey

Butte County FDEM Survey

*California Department of Conservation, California Geological Survey

Surfa	Surface Geology										
GeoSystem	ns Analysis										
Project #: 230212	July 2023	COLLIER GEOPHYSICS									
Drafted by: J. Morrison	Checked by: D. Laymon	Figure 2									

	ŀ	Appare	ent C	ondu	ctivi	ty (mS	/m)	
15	25	35	45	55	65	75	85	95
No rep ma wit	t e: Lo preser iterial h high	ow con nt mor with f ner co	nduct e coa ines nduc ove is	ivity v arse g (silts tivity	valu grair clay (wa ppro	es (coo ned or s vs) incre rmer co pximate	oler c sandi easin olors) depti	olors) jer g i.
Le	eger	ie by ii						ini mea.
<	\bigcirc	Creel	k Bed	Locati	ions	of Intere	est	
		Surve	eyed A	Areas L	_abe	led 1-11		
			В	utte C	FDE Cour	EM Sur hty FDI Chico, CA	vey EM S	urvey
			C	GeoSy	ster	ns Anal	ysis	0
			Proje	ect #: 230	0212	Checked by:)23 D. Laymon	COLLIER GEOPHYSICS Figure 3

	ŀ	Appare	ent C	ondu	ctivi	ty (mS/	′m)	
15	25	35	45	55	65	75	85	95
No rep ma wit	t e: Lo preser iterial h high pth list	ow cor at mor with f aer co ed abo	nduct e coa ines nduc ove is	ivity v arse g (silts tivity the a	valu grair clay (wa	es (coo ned or s vs) incre rmer co pximate	oler c sandi easin olors) deptl	olors) ier ig i.
acr Le	eger	ie by tr		IVIQUA	ai co	iii dut no	ot con	itirmed.
<	\bigcirc	Creek	k Bed	Locati	ions	of Intere	est	
		Surve	eyed A	Areas L	_abe	led 1-11		
			В	utte C	FDI Coui	-M Sur hty FDE Chico, CA	vey EM S	urvey
			G	GeoSy	ster	ns Anal	ysis	3
			Proje	ect #: 230	U212 rison	July 20 Checked by: D	Laymon	GEOPHYSICS Figure 4

Coordinate System: WGS 84 / UTM Zone 10N (ft)

	Þ	Appar	ent C	onduc	ctivi	ty (mS/	m)	
15	25	35	45	55	65	75	85	95
No rep ma wit De ach	oreser oreser iterial h high pth list	ow col nt mor with f ner co ed ab	nduct e coa ines nduc ove is he inc	ivity v arse g (silts d tivity (the a lividua	valu rair clay (wa ppro	es (coc ned or s vs) incre rmer co pximate il but no	oler c sandi easin olors) depti	olors) ier ig). h
<u>Le</u>	egen	id Cree	k Bed	Locati	ons	of Intere	est	
		Surv	eyed A	Areas L	.abe	led 1-11		
			В	utte C	FDI Cour	EM Sur hty FDE Chico, CA	vey EM S	urvey
			Ċ	GeoSys	ster	ns Analy	ysis	
			Proje	ect #: 230	212	June 20	023	COLLIER GEOPHYSICS
			Drafte	d by: J. Morr	ison	Checked by: D	. Laymon	Figure 5

APPENDIX B Well Driller Geologic Logs

GeoSystems Analysis, Inc.

 $Basin\Active\ Projects\Wood\ Rodgers\Rock\ and\ Sand\ Creek\ Flood\ Mitigation\Report\2237\ Sand\ Creek\ Geophysical\ Characterization\ Report.docx$

23N/IE-17 /

ORIGINAL	STATE OF C	CALIFORNIA	Do not fill in
File with DWR	THE RESOUR		No 101952
	WATED WELL D		NU. 101055
Local Permit No. or Date	WAIER WELL D	RILLERS REPORT	State Well No. Other Well CONFIDENTIAL LOG
$\overline{(1)}$		(12) WELL LOC	
Address		from ft. to ft. Formation (De	epth scribe by color, character, size or material)
City		0 - 10	Diet
(2) LOCATION OF WELL (See instr	uctions):	10 - 18	Rock
County Owper Owper	's Well Number	18 - 70	Brown Clay
Township 33 N Banga 18	Santian 197	8	ford Ded Cloy
Distance from cities, roads, railroads, fences, etc.	Duniar Rd8	102 - 117	V Chowa Chag
m. No . Ohico Air,	port.	117 - 163	Red alou
		16-3-165	Gravel
·		165-187	- Brown Clay
	New Well Deepening Ci	187 / 189 >	Gayal d
Munion	Reconstruction	209-220	Ked alley
0 3 7	Reconditioning		Gravel /
0 00 7	Horizontal Well	5 10 - 11a	
2 . 0	Destruction [] (Describe destruction materials gal		
	procedures in Item 12		- An IV
	Domestic		
	Irrigation		20-
	Industrial		
	Ten Well	A = 0	
	Stock	<u> </u>	
WELL LOCATION SPETCH	Municipal D		-
(5) EQUIPMENT: (6) GRAV			······································
	No Size		
Cable X Air D Statemen of	bore		
Other Bucket Protect from		<u> </u>	
(7) CASING INSTALLED: (8) PERFC	DRATIONS:	$\mathbb{O}^{}$	
From To Pie Construct From			
ft. ft. Wall ft.	ft.		
0 57 6 185		-	
(9) WELL SEAL			
Was surface sanitary seal provided? Yes X No [If yes, to depthft.		
Were strate scaled against pollution? Yes []	No [] Intervalft.		
Method of sealing		Work started 3/14 19	Completed 2/15_19
Depth of first water, if known		This well was drilled onder my juri	ENT:
Standing level after well completion	Ŕ.	knowledge and believe	
(11) WELL TESTS: Was well test made? Yes D No X If ves.	by whom?	SIGNED CHICOWS	
Type of test Rump Bailer Bailer		NAME ALIN DI	40:0001/100
Diepui to water at start of testft.	At end of test	Address Address	A La Contraction of the second s
Cheminal analysis made? Yes No X If yes.	by whom?	City	100. 3031/3
Was electric log made? Yes 🗍 No 🕅 If yes,	attach copy to this report	License No.	Date of this report

. H

.

ь ÷

DWR 188 (REV. 7.78) - IF ADDITIONAL SPACE IS NEEDED, USE NEXT CONSECUTIVELY NUMBERED FORM

		•							23×11E-17
		` •							Do Not Fill I#
ORIGIN	141					THE	RESOU	CES AGENCY	NIG 114210
File wi	th DWE			D	EPAR	TME	NT OF \	NATER RESOURCES	Nº 114310
-				W	ATE	RW	ELL D	RILLERS REPORT	State Well No
									Other COMPLEENTAL NO
(1) (1)			. <u> </u>					THE FORM	Stuter Code Sec 1200
								145	165
								Teral depth 107 fc	Depth of completed well ft.
									pr of material, and structure
(2) 100		N OF W	ELL.			v		I	
County	Butt	e)waer'i numl	er. if my			· · · · · · · · · · · · · · · · · · ·	
Township, Ras	age, and Sec	tion 7	221			<u>_</u>	K.17	02 Light Reck	y Sol!
Distance from	cities, read	s, railroada, ei	<u> </u>	77/ Fe		-	(Main	221 Hard Fan	te Larde Bocks
2001	<u>ut</u>	<u> </u>	St.		.	<u> </u>		2131 10110W	and k Frankel
(3) TYP	PE OF	WORK	(cbeck)):			_	$\frac{3}{62} = -0300 \text{ srse} = 32$	cky prown clay
New Well [∐ Dee ma descerito	epening 📋	Kecon A broceds	ditioning [D(зстоуна	\$ (_]	91113 Sandsta	ona
(4) PRO	POSEC) USE /	chech)	•	75)	EOUI	PMENT:	113127 Coarse	e sand
Domestic	K Ind	ustrial	Munici	ipal 🗖	Rot	-~ 11Y		127164 Coarse	e sand a prown Clay
Irrigation	Tes	it Well 🗌	j O	ther 🗍	Cab	le	2	164165 Coars	e sand & F.avel
					Oth	er			
(6) CAS	ING I	NSTALI	ED:			.1	L1		
STE.	EL:	ОТНЕ	R:		11 gr2v	er pac.	KCU		
	DOUL	ICE []							···· · · · · · · · · · · · · · · · · ·
From	10		Gage	Diamete	ч Г	7000			
ft.	ft.	Diam.	Wall	Bore		fı.	ft.		
0	70	811	1260						
·	·	<u></u>			_		<u> </u>		
			<u> </u>						
Size of shoe or	well sing:	<u>0x6x1</u>	<u>/2</u>	Size of gri	(vel: ())	/1		_	
(7) PER	FORA	FIONS (OR SCH	LO OX REEN:	∠ųx∔	14.	D		(GTBF Lode 344, 13/94
Type of perior	Lion or Bar	me of screen							······································
			Perf.	Rows					·
From	1 1	Γο	per	per		. !	Size		
ft.			row	10.		in.	. x)n.		
				-					
				1					
									· • • • • • • • • • • • • • • • • • • •
(8) CON	NSTRU	CTION:	1				ď A		
Was a surface	sanitary sea	provided?		• D	To what	depth	<u>50 ft.</u>		· · · · · · · · · · · · · · · · · · ·
Were any strat	a sealed aga	inst pollution	<u>' Yes</u>		11	res, note	depth of strate	·	•
r rom	fr.	10	 ft.					Work started 3/15 19 .	Completed 3/23/76
Method of seal	ling	Puddle	ed Cl	ay				WELL DRILLER'S STATEMENT	· · · · · · · · · · · · · · · · · · ·
(9) WA	TER L	EVELS:	. if known	91		ft.		This well was drilled under my of my knowledge and belief.	jurisdiction and this report is true to the best
Standing level	before per	rforating, if	known			ft.		NAME J.C. Plumt	ner & Co
Standing level	after perf	orating and d	leveloping	70		ft.		(Person, firm,	ex corporation) (Typed or printed)
(10) WI	ELL TH	ESTS:				_		Address 541 Jest	<u>1_th_St.</u>
Was pump tes	t made? Y	er 🗶 No		í yes, by who	m)	Ba	iler	Chico,	Calif.
Yield: 30	/ <u>k</u> a	il./min. with	<u> </u>	ft. draw	lown af ter	<u> </u>	<u>hes.</u>		(Vell Driller)
Was electrir b	or made of s	weil? Yes 🗆	No 🗆	Cal analysis m	auer Tes	_ <u></u>	<u> </u>	Licence No. 279572	Daved 3/31/76
								······································	······································

SKETCH LOCATION OF WELL ON REVERSE SIDE

l marine

ORIGINAL S File Original, Duplicate and Triplicate with the REGIONAL WATER POLLUTION CONTROL BOARD No	WATER WELL (Sections 7476) STATE O	DRILLERS R 7877, 7478, Water Code) F CALIFORNIA	LEPORT	Do Not Fill In Nº 63043 State Well No. Other Well No. Z ³ N//E
1) OWNER:	<u></u>	(11) VELL	LOG:	
		Tand dants 56.5	fr. Dan	th of counsisted well
—		Fernations Discrite	by color, character, she	of material, and structure.
=			3 ft Sol	
·····	· · · · · · · · · · · · · · · · · · ·	=	12 - 140	CONFIDENTIAL
(2) LOCATION OF WELL:				Code Sec 12
County Duvoc Owner's number, if a			47 Ja	· · · · · · · · · · · · · · · · · · ·
TOTN DITE See	20-19			ABT
			- 14 · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·				UT
	<u></u> .	_ 90 -		vel
(3) TYPE OF WORK (cbeck):			155 Ula	y
New well 🛣 Decening 🗋 Recording	ioning 🗋 Abandon		LOF LAV	78
If abandonment, describe material and procedure in It	em 11.		- 290 - Ula 	₩ ma
(4) PROPOSED USE (cbeck):		300	325 CLa	
Domestic 🔲 Industrial 🗍 Municipal 🗌	Cable	: 325		- 78,
Irrigation 🔀 Test Well 🗌 Other	Dug Well	332	345 Har	d Fan
(6) CASING INSTALLED:	If gravel packed	<u> </u>	360 Darv	18.
		300	<u>- 390 - 61a</u>	y d Pan
From Oft. to 100ft. 1/Diam. 10wall	Diameter from of Bore ft.	<u>fi.</u> <u>J70</u>	<u>435 Gra</u>	vel Cement
ne e de At	1+	- 435	475 Lav	a
······································		475	484 Gra	vel Cement
······································	· ·	<u> </u>	<u> 495 San</u>	d tone
		- 495	<u> </u>	
Type and size of shoe or well ring 1-1/# Shoe	Size of gravel:	<u></u>	<u>568 San</u>	d & Gravel
Describe joins				
(7) PERFORATIONS:			**	
Type of performers used none		· · · · · · · · · · · · · · · · · · ·		
Size of perforations in., h	marth, by	<u>in.</u> "		
From ft. to ft. Perf.	per row Rows per	<u>ft.</u> "	······································	
			CONF	I.D.E.N.T.I.I.
······································			Section 7	2026.1, Water Guin.
(4) CONSTRUCTION		-	**	· · · · · · · · · · · · · · · · · · ·
US A SUFFACE MARICES SCALE DESVICED? I Yes IN TO TO TO	hat depth	ft		
Were any strata realed against pollution? [] Yes [BNo If	yes, note depth of strate			
From ft. to				
3		**		
Method of Sealing		Work started Ma	r21,1959 "	. canta intra 16,1999 "
(9) WATER LEVELS:	1	WELL DRILLE	R'S STATEMENT:	
Depth at which water was first frand		ft. This well was my knowledge an	erities ander my ju d belief.	rnentine and this report is brar to the ba
Standing level before perforating		ft. NAME LAB	nn Fran & M	stor the bat
Standing level after performing		ft. Addama Part	C. Berr OAL	Same in the second s
(10) WELL TESTS:				fe
Was a pump test made? 🗋 Yes 🎦 No If yes, by when?			The Me	
Yield: 7.420 , gal./min, with 1981	ft. draw down after			V. 24
				Tune15.1959

ŧ

Date Wo Local Per	rk Began Permit Ag mit No	епсу 269	27 13. 61 cec	-9 -1 -1 -1	Я, Е.	Ended <u>2 -</u> Permit LOC	28.99	<u>6 - /</u>	- 9 - 7	9			E _ _ _ _		L RS/OTH	ONGITUDE 1 1 ER
ORIENTA DEPTO Suit Ft.	HON (∠) FACE IN FL	DEFT	mcal 1 TO 1	FBIST	HQI WAT DI	NEXIMITAL <u>A</u> N TER <u>20(PL)</u> ESCRIPTION Normal, grain vize, a	NGLE	(SPECIFY) JRFACE]] [AN	ν,	
a	2	Seil							Ad	dress Com	EN ZI	ND	<u> </u>	+		
2	<u>. 4</u>	Ha	LD_	<u> </u>	N	-Ceme	NTED		G	<u>у сн</u>	<u>(😳 </u>					
4	20	HAL		Par	/				Co	unty <u>Bi</u>	<u>atte</u>					
10	30	- GKa		<u> </u>					AP	N Book OH	Z_ Page	220	Parcel	C)ਹੱਟ	2
20	20	<u>(001</u>	2/2	# (-7	ay			To	winship <u>2.</u> 2	A Rang	<u> </u>	Section	n	20	
95	12	<u>q</u> ka		<u>e .</u>				· · · ·	La	titude	L BEN	NORTH	Longi	tude _	060	MEN SEC
	160	<u>, Nço</u>	00	4 +		opple	<u>م</u>		┣—	LO(CATION	SKETCH			T A	CTIVITY (2
164	170	<u>)9800</u>	. 4	<u>(</u>		uce			<u> </u>	- 1	NORT	H			1	NEW WELL
	<u>.</u>	<u> </u>													MOD	FICATION/REPAIR
	+	:				· · ·		_	1	1						Deepen
	<u>.</u>					· · · ·			ł				uer.			Other (Specify
	<u> </u>								1	NO KEN	<u> </u>	,	ົ	\cap		
	<u> </u>	<u>↓</u> ,				. .			ł	\sim)	•	শ্র	$\mathbf{\varphi}$	—	DESTROY (Describe
									1	\mathbf{A}				ł		Under "GEOLOGICL
									IS1	いまし	1				- PL	ANNED USE(
<u> </u>						<u>.</u>			. ≷	$\langle \rangle$				୍ର) କ୍ର	i –	MONITORING
	1	1							1	21				12	WATE	R SUPPLY
	1 •								I 1	S 3				12		Domentic
		·				·			,	ž				73		Public
							-			N/				5		Irrigation
		, ,				<u>.</u>] ह		Industrial
		<u> </u>							1					(న		"TEST WELL"
		<u> </u>								I		u		10	_	CATHODIC PROT
	<u> </u>								Hle	ustrate or Descri	be Distance	of Well from	n Landr	nerks] _	OTHER (Specify)
		· ·····							PL PL	EASE BE ACC	WRATE 6	COMPLET	с. Е.			
	<u>. </u>			<u>-</u>					DR		-				0%	
	<u> </u>	l							MET	HOD NO	IARY	VIDID	F	FLUID	<u>רנו<</u>	
	,					· ·			DEP	TH OF STATIC	LEVEL	S HELD	UFC	OMP	LETE	
_ _									WAT	rer level	-15	_ (Ft.) & D/	ATE ME	ASURE	:D	- 60 - 9
			107	<u>`</u>					EST	IMATED YIELD	20	_ (GPM) 🛓	TEST T	YPE	1116	
TOTAL L	EPTH OF		100		(Fea	et)			TES	T LENGTH	💻 (Hra.)	TOTAL DRA	WDOWI	N	((Ft.)
TOTAL	EPTH OF	LOMPLET	ED W	ELL -	10	(Feet)			• м	ay not be repres	sentative of	a well's lon	g-term	yield.		
ßE	ртц					с	ASING(S)	-			07.4		ANNU	LAR	MATERIAL
FROM	URFACE	BORE- HOLE	TYF	존 (스)						FROM	SURFACE			TY	/PE
		DIA.	¥₿	5 3 3	¥İ	MATERIAL /	DIAMETER	GAUGI		SLOT SIZE			CE-	BEN-		
FL t	o Ft.	(Incluses)	2	583	ΞI	GHADE	(inches)	THICKNE	ss	(Inches)	₩t.	to Ft.	MENT (Z)	1000000E		(TYPE/SIZE
0	100	9.00		+	-	PVC	5.00	CL 20			0	45		· — /	<u>, </u>	} <u>→</u> _
100	180	9.00		┟┤	+	PVC	5.00	CL 20	0	.032	45	180	t {	· ·		3/8 GRAVE
	• • • • • • • • • • • • • • • • • • •		ļ "		\uparrow			<u></u>	Ť	<u> </u>	<u> </u>		<u> </u>			10 413200
-	· · · · · · · · · · · · · · · · · · ·		\vdash	┽┤	+			1	-+			<u>.</u>				
			\vdash	+ +	╉				-			;	<u>†</u>	וטע	<u></u> 1-	4 JYYY
									-	2 .		1				
-	ATTACE	IMENTS	(∠))				·	(CERTIFICA	TION ST	ATEMEN	ليي حمد T	·		L
	Gastasia	1.00				I, the under	rsigned, ce	ertify that t	his r	eport is compl	ete and ac	curate to t	he bes	t of m	y know	ledge and belie
-		LOU etruction D'-	-				ant	Wat	ŚAN	i Well	De	ILLIN	۵			-
-	Gasshur	inel (ogfe)	iyi am			(PERSO	n, firm, or i	CONFORMITION)	(mr	D OK PERMITED)			3			<u>_</u>
-						1 8015	Cab		• +	2.	0	Hico		Ca	•	9597
	Soil/14/~*	Chamina'	Anoh												-	
-		er Chemical	Analyr	905		ADDRESS	2								STATE	

and the second
•

ORIGINAL STATE OF CALIFORNIA File with DWR JAN 0 2 2004 WELL COMPLETION REPORT Refer to Instruction Pamphlet Z Page ___ of __ ELL NO./STATION NO <u>24-03</u>752066 Owner's Well No. 67 Date Work Began ______, Ended ____, Ended ____ LATITUDE LONGITUDE HEALTH DO BUTTE CO. Local Permit Agency <u>384 4</u> APN/TRS/OTHER Permit No., Permit Date 07-29-03 GEOLOGIC LOG WETL OWNER ORIENTATION (\leq) VERTICAL _ HORIZONTAL (SPECIFY) Ν ANGLE _ DRILLING DRILLING METHOD MUD RD TORYFL BOM TON DESCRIPTION ÷ł DEPTH FROM SURFACE ĊĪŢ Describe material, grain size, color, etc. STATE Et. 21P to Et. COBBLE 14577 Address AUA. CLAY AND OPPUJU City CHTCO รอ 165 County BUTTE 250 APN Book _____ Page _____ Parcel _ Township _____ Range _____ Section LAVA AND 20 NORTH Latitude. Longitude _ WEST DEG. MIN. SEC DEG. MIN. SEC LOCATION SKETCH ACTIVITY (1) NORTH NEW WELL MODIFICATION/REPAIR ___ Deepen ... Other (Specify) RENCOW A) DESTROY (Describe 5 Procedures and Materials Under "GEOLOGIC LOG PLANNED USES (≤) BRET WATER SOPPLY 8 ٠ Domestic . Public Irrigation ... Industria WEST MONITORING TEST WELL CATHODIC PROTECTION HEAT EXCHANGE DIRECT PUSH INJECTION MERIDIAN RD. VAPOR EXTRACTION SPARGING SOUTH Illustrate or Describe Distance of Well from Roads, Baildings, Fences, Rivers, etc. and attach a map. Use additional paper if necessary. PLEASE BE ACCURATE & COMPLETE. REMEDIATION OTHER (SPECIFY) WATER LEVEL & YIELD OF COMPLETED WELL DEPTH TO FIRST WATER _______ (Ft.) BELOW SURFACE DEPTH OF STATIC (Ft.) & DATE MEASURED ________ WATER LEVEL ESTIMATED YIELD . ______ (GPM) & TEST TYPE ALC LIFT TOTAL DEPTH OF BORING 250 (Feet TEST LENGTH _____ (Hrs.) TOTAL DRAWDOWN_N/A- (Ft.) 2<u>50 (Feet</u>) TOTAL DEPTH OF COMPLETED WELL . * May not be representative of a well's long-term yield. CASING (S) ANNULAR MATERIAL DEPTH DEPTH FROM SURFACE BORE-HOLE DIA. FROM SURFACE TYPE (\leq) TYPE SCREEN CON DUCTOR INTERNAL GAUGE SLOT SIZE MATERIAL / ĊE-BEN-BLANK FILTER PACK OR WALL THICKNESS DIAMETER IF ANY (Inches) GRADE MENT TONITE FILL Ft to Ft Ft. (TYPE/SIZE) 닅 Ft. la (inches) (Inches) (\preceq) $(\leq$ ouc NA (1,210 0 150 40 s 75A (R 50 250 L CL.ZU 032 A CON 250 ATTACHMENTS (±) CERTIFICATION STATEMENT I, the undersigned, certify that this report is complete and accurate to the best of my knowledge and belief. Geologic Log DRELLING Well Construction Diagram Geophysical Log(s) <u>#</u>6 CHICO Soil/Water Chemical Analyses ADDRESS _ Other _ 12-03 Sianea ATTACH ADDITIONAL INFORMATION, IF IT EXISTS.

IF ADDITIONAL SPACE IS NEEDED, USE NEXT CONSECUTIVELY NUMBERED FORM

ORIGINA File with	DWR	110	2	5 70	17	WELL	STATE O	F CALIF		NIA N REPOR	т	- pwn us	3N	101	W+	BII
Page 1	_of_1_	500		1 10	an -		Refer to In		Pam	SEO0		- 1 - 1	TATE W	ELL NO.	STATIO	N HO.
Owner's	Well No.	11 1	0	10			-11-16	09	90	5590		LATITUDE			LO	
Date Wo	rk Began.	11-1 D		10	201	Ended	1th De	nt				111	1.1	1.1	1.1	1111
Local F	ermit Age	WS16.	.01	00	201	Darmi	Data 8-	5-16			- Ľ		AP	N/TRB/C	THER	
rem	alt ivo.4214	1010	GE	OLO	GIC	LOG -	L LVate		-	Sla	-	WELL O	WNE	8 -		
ORIENTAT	TION (Z)	_X ve	RTICA		_ H	ORIZONTAL	ANGLE	(SPECIFY)	L							
		DRILLING	A	ir	R	otary	FLUIDO-FC	am	1							
DEPTH	FACE				E	DESCRIPTION		10 -								
R. 1	to FL	1	Desc	ribe i	mate	trial, grain siz	ie, color, etc	Mr m	1		30511	10004030	0.010			
0	8	Cla	ay_	&	ROO	CK /	SH no	21-6	10	didriges	Chic	TRO	au	_		
8	45	Gra	ave	1	2 1	Rock	1010	2	16	ares	Butt	e	-			
53	200	Sar	nda	to	ne	with Se	ams of	1	Λ	PN Rook 04	7 Pare	100	Parcel	0	85	202
		Cer	ner	ite	d	Gravel.	(\Box)	12	Pr	ownship 00	Rang	0	Sectio	n	-	
2		2		12	1.5	0 11	(1)	V	a	at 1		N	Long			w
			C	01	-	(1)	112	2	é	DEG. LO	CATION	SKETCH ·		, DE	AC	INN. SEC. TIVITY (∠) —
	1	6	115	-	1	112	U.	2162	÷		NORT		-		XXN	EW WELL
	-	0	-	+	2	410		9	-						MODIFI	CATION/REPAIR
		-11	-	7	+	25	U.S.	-							1	Other (Specify)
	1	110))	P	293			1						-	comew manda
	1 (0	1	Ξ	7	00	THE P		-	1					- 1	- P	ocedures and Materials nder "GEOLOGIC LOG"
U	11	\mathcal{I}		n.	10	20.									USES	(∠)
		-	8	160	0		-	-	1					- 7	XX	SUPPLY
			_	~	_			_	-					-	- 11	rgation Industria
			_	_	_				- 8					EAS		MONITORING
	-		-		_				1					11	CATHOR	TEST WELL
					_				1							HEAT EXCHANGE
-			-		-				1							DIRECT PUSH
	1	8	-						1						WAR	INJECTION
								1	1						1000	SPARGING
				_					1	liustrate or Describe	Distance of	Well from Boa	ds, Build	lings,	1.54	REMEDIATION
					_	_			1	Fences, Ilicers, etc. as accessory. PLEASE I	ud attach a' u BE ACCUR	ATE & COMP	ional pay LETE.	nu și		THEN (SPECIPY)
	-	-							F	WATE	R LEVEL	& YIELD	OF C	OMPL	ETED	WELL
			_						1.	DEPTH TO FIRST W	VATER	(FL) 88	ELOW S	URFACE		
			_		-	_			1	DEPTH OF STATIC	59				11_1	1-16
			_		_			-	12	WATER LEVEL	100+	(PL) & DATE	E MEASL	JRED	ir I	ift
TOTAL D	EPTH OF	BORING			OF	(eet)			1.	ESTIMATED VIELD	(Here)	(GPM) & TOTAL DRAM	DOWN	CPE_	(8)	
TOTAL D	EPTH OF	COMPLET	ED	WELL		20.0 (Feet)	P			* May not be repr	esembanite o	of a well's los	ug-term	yield.	- 94	
1			1	_	_		-		-				T			ALL TROPILY
FROM S	PTH	BORE-	T	PE (-1	-	CASING (S)		_		FROM	SURFACE	-	ANN	TY	PE
	1920 A.Z. C.	DIA.	8	3L	5	MATERIAL /	INTERNAL	GAUG	8	SLOT SIZE	100000	and the second	CE-	BEN-		FILTER PACK
Pt. 1	o FL	(increat)	3	38	ALL P	GRADE	(Inches)	THICKNE	iss.	(inches)	PL.	to FL	(x)	(Z)	(×)	(TYPE/SIZE)
0	160	6-5/	8	T	ŕ	Steel	.6	.188	5		0	24	1	XX		
160	200					PVC	4	Line	er			1				
						-	1			1		1				
		-		-	-							1	-			
-			\square	-	-		-	_				1	-	-	-	
	ATTAC	IMENTS	100	-					-	CERTIFICA	TION ST	ATEMENT	-	-		
	arraci	Loc .	1-1			I, the un	dersigned, ce	artify that i	this	report is complet	te and acc	urate to the	best of	t my kr	owledg	e and belief.
	Geologic	LOg					W.	S. He	it	man Dri	lling					
-	Geonhei	ical Lonis)	-qui			IPE IPE	RSON, FIRM, OR C	ORPORATION	1 (11	PED OR PRINTED)		222		1.1.1.5		
	Sol/Wate	er Chemical	Anal	yses			P. (0. Bo	X	1010, Re	ed Bl	uff, C	A	960	80	
-	Other	at sea training		1.5		ADDRESS	115	16		6	1.	11	-15-	16	38	65772
ATTACH A	ADDITIONAL	NFORMATI	ON, IF	TE	KISTS	Signed 7	ST LICENSED WAT	THC. I	TRAC	man,	Q		TE SIGN	D	- 7	-57 LICENSE REMARK
				15.4	mm		IC NEEDER	LICE ME	VT.	CONCECUTING	AUMORT	00 5004			6	CSP 03 788

State of California Well Completion Report Form DWR 188 Auto-Completed 10/14/2019 WCR2019-011330

Owner's Well Num	ber	Date Work Began	07/17/2019	Date Work Ended	08/13/2019
Local Permit Agen	cy Butte County Public Health				
Secondary Permit	Agency	Permit Number	EHWL 19-0009	Permit Date	08/01/2019
Well Owner	(must remain confidential	pursuant to Wate	r Code 13752)	Planned Use	and Activity
Name XXXXXX	XXXXXXXXXXXXXX			Activity New Well	
Mailing Address	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			Planned Use Water Su	poly Irrigation -
	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX			Agriculture	e
City XXXXXXX	xxxxxxxxxxxx	State XX	Zip XXXXX		
		Well Loc	ation		
Address			API	N 047.100.200	
City	Zip	County Butte	e Tov	vnship 23 N	
Latitude 39	49 32.5199 N Long	gitude -121 55	27.12 W Rar	nge 01 W	
Deg.	Min. Sec.	Deg. Min.	- <u>Sec.</u> Sec.	ction 25	
Dec. Lat. 39.82	57 Dec.	Long121.9242	Bas	wind Surface Elevation	00
Vertical Datum	Horizont	al Datum WGS84	Glo Ele	vation Accuracy	
Location Accuracy	Location Dete	rmination Method	Ele	vation Determination Method	
	Borehole Information		Water Lev	el and Yield of Com	pleted Well
Orientation Ver	tical	Specify	Depth to first water	(Feet be	low surface)
Drilling Method	Other - Reverse Drilling Fluid	Bentonite	Water Level	55 (Feet) Date Mea	sured 08/13/2019
-	Rolary		Estimated Yield*	(GPM) Test Type	
Total Depth of Bo	ring 770	Feet	Test Length	(Hours) Total Drav	wdown (feet)
Total Depth of Co	mpleted Well 770	Feet	*May not be represent	ative of a well's long term yie	ld.
	1	Geologic Log -	Free Form		
Depth from Surface			Description		
Feet to Feet			·		
0 12	clay				
12 45	volcanics with gavel				
45 55	clay				
55 60	gravel				
60 97	clay				
97 138	volcanic gravel				
138 155	ciay				
155 1//	gravel				
	ciay				
440 465	graver				
400 508	Gravel				
600 770					
000 //0	voicanics				

	Casings														
Casing #	Depth from Feet to	n Surface o Feet	Casi	ng Type	Material	Casings S	Specificatons	Wal Thickn (inche	l ess es)	Outside Diameter (inches)	Screen Type	Slot Size if any (inches)	Des	scription	
1	0	420	Blan	k	PVC	OD: 17.4 SDR: 17 1.024 in.	00 in. Thickness:	1.02	24	17.4					
1	420	480	Scre	en	PVC	OD: 17.4 SDR: 17 1.024 in.	00 in. Thickness:	1.02	24	17.4	Milled Slots	0.05			
1	480	500	Blan	k	PVC	OD: 17.4 SDR: 17 1.024 in.	00 in. Thickness:	1.02	24	17.4					
1	500	770	Scre	en	PVC	OD: 17.4 SDR: 17 1.024 in.	400 in. 1.024 17.4 Milled 7 Thickness: Slots					0.05			
						An	nular Ma	aterial							
Depth Sur Feet t	from face to Feet	Fill			Fill T	ype Detail	s			Filter Pack	Size		Descripti	on	
0	50	Ceme	ent	10.3 Sa	ck Mix										
50	770	Filter P	ack	6 x 16					6 x	16 and 6 x	12 mix				
Other	[·] Observa	ations:													
	E	Boreho	le S	pecific	ations					Certific	ation S	tatemen	t		
Dept Su Feet	h from rface to Feet		Bor	ehole Dia	ameter (inches)		I, the undersig	ned, certify	that this	s report is comp SU	blete and accu	RILLING IN	of my knowledg C	e and belief	
0	770	28						Person, I	-irm (or Corporati	on		CA	0500	e 2
								Ado	dress	.21		City	State	- 9590 Zip	<u>, , , , , , , , , , , , , , , , , , , </u>
							Signed	electron C-57 Lice	ic sig	nature rec Nater Well C	ceived	08/13/201 Date Signe	9 ed C-57 L	656504 icense Nur	nber
							_			DW	/R Use	Only			
							CSG #	State \	Nell I	Number	Sit	e Code	Local	Well Num	ıber
								-						.	_
								itude D	ea/N	/in/Sec	N	Longitu	de Deg/N	lin/Sec	W
							TRS:		og/n			Longita	de Degin		
							APN:								

File Or Page Owner Date V Local I Permit	iginal wit 1 's Well N Vork Begi Permit Ag Number	of umber an <u>10/</u> ency <u>E</u>	1 FEB 2 05/2016 Sutte County P 16-0012	2 7 2017 De ublic Heal Permit	te Work E th Date <u>6/2</u>	Nell Co Point Inded 10/	State of Ca omplet or to instruction e0326 13/2016	alifornia tion Rep on Paraphiet 441	ort		I S	APN/T	Ny - Do Not Fill In DI W - BO nber/Site Number Longitude RS/Other
			Geo	logic Log							We	II Owner	
0	rientatio	n Ol	/ertical OH	orizontal	OAng	le Spec	ity	-					
Drillin	ng Method	Direct #	Rotary		Drilling	Fluid Ben	tonite mud	_					
Dep	th from S	Ford		De	scription	ne color at	-						
0	3	1995	clay	Section intercent	an grant 50	e, coor, etc					Mat	Location	
3	18	8	rock					-	. 4004	Gilkore (ano	Location	
18	38		clay		_			- Addres	hice	Sumdie!	an ISI	0	ety Butte
38	42	1	gravel					Cay S		-		000	do
42	170	3	clay					Lacoud	Deg.	Min.	Sec.	w congitue	Dea. Min. Sec.
176	18	5	gravel					Datum	1000	Dec. L	at		Dec. Long
185	18	7	clay and frac	tured clay				APN B	ook 047	Pa	ge <u>330</u>	-	Parcel 010
187	196	3	gravel 192	Hard				Townsh	nip	Rar	ge	_	Section
196	240)	clay and frac	tured clay					Loca	tion Si	ketch		Activity
240	246	3	gravel					(Skelp)	must be draw	An by hand	after form a	s printed.]	New Well
246	330)	clay							- 101 (1)	1		O Modification/Repair
330	335	5	gravel										O Other
335	555	5	clay										O Destroy Details sharters and automatic
555	650)	black gravel								1	L	Inter (SECKOGIC LOG)
650	692	2	clay						1		1	L	Planned Uses
692	740)	black gravel				_		1		1		Water Supply
								Wea	w1996	TALA	Lange Lange	1011 0 to 10	Cathodic Protection Cathodic Protection Dewatering Heat Exchange Injection Monitoring Remediation Sparsing
_	-			_		_		-11	-	1202			O Test Well
1.5	-	-	-		_	_		Battath M	least the delayer	South	minds, building	an ferman	O Vapor Extraction
_	-	-		_				Pingse be a	nd sillach a roag.	Use addies	nal paper if ne	Cresslarly.	O Other
	-	-		_	_	-	_	Water	Level and	d Yield	of Com	pleted W	ell
-	-		-			_	-	Depth t	o first wate	r			(Feet below surface)
-	-	-			-			Depth t	Static			-	looment totamoto
Tetet	Dereth into	Boder	7/0	-		Feet	-	Water L	evel 50		(Fe	et) Date M	reasured 10/13/2016
total	wepth of	ocenig	740			- reet		Test Lo	noth		(GP	urs) Total C	Drawdown (Enel)
Total	Depth of	Comple	ted Well 270		_	Feet		*May or	t be repre	sentativ	e of a we	It's long terr	m yield.
-				Car	sinas			-		1		Annula	r Material
Dep Su	th from Inface	Borel	eter Type	Mat	orial	Wall Thickness (inchor)	Outside Diameter	Screen Type	Slot Size if Any	Dep	th from urface	Fill	Description
0	160	20	Blank	PVC	-	SDR-21	10		(Interies)	0	20	Bentonita	3/8" chips
160	200	20	Screen	PVC	-	SDR-21	10	Milled Slots	0.050	20	270	Filter Pack	6 x 16 sand
200	240	20	Blank	PVC		SDR-21	10		1				
240	270	20	Fill pipe	PVC		SDR-21	10	Milled Slots	0.050				
				-				-	-				
-				1									
		Attac	chments		-			(Certificat	ion Sta	tement		
	Geologia	Log	CORE OF STREET		I, the un	Sullivan	certify th	at this report	is comple	the and a	ccurate l	to the best o	of my knowledge and belief
	Well Cor	nstructio	on Diagram		rearing .	Person, F	iem or Corpo	nikion	2.1				05055
H	Soll/Wat	er Cher	mical Analyses		6458	County R	Address	0	Orla	nd o	v	<u>CA</u>	30303
	Other	- Seriel		_	Signed	Cha	he o	helleva	-		10/19/	2016 65	6504
Mach ad	stional infor	ination, if	it exists,			C-67 Lice	insed Water 1	Well Contractor			Date Si	gned C-5	7 License Number

DWR 188 REV. 1/2006

*The for

a Adaba Das

IF ADDITIONAL SPACE IS NEEDED, USE NEXT CONSECUTIVELY NUMBERED FORM

APPENDIX B

06/06/2023

TH002748.JPG 24: 20 in scour

TH002750.JPG 26: bridge scour

TH002752.JPG 28: bridge scour

TH002754.JPG **30: bridge scour**

TH002753.JPG 29: bridge scour

06/06/2023

TH002757.JPG 33: from 10 ft deep scour hole

TH002758.JPG 34: from 10 ft deep scour hole

TH002759.JPG 35: from 10 ft deep scour hole

TH002760.JPG **36: from 10 ft deep scour hole**

06/06/2023

TH002810.JPG 86: heavy deposition chnl 40 wide

TH002811.JPG 87: bank erosion channel 20 wide

88: bank erosion channel 10 wide

TH002813.JPG 89: bank erosion channel 10 wide

TH002814.JPG 90: left path overflow us bank

Rock Sand Filed Visit 06062023

06/06/2023

Rock Sand Filed Visit 06062023

06/06/2023

APPENDIX C

September 1, 2023

Job No. 8874.001

Subject: Rock Creek Reclamation District – Flood and Recharge Rock and Sand Creek Flood Mitigation Project

Basin description

The Vina Subbasin is situated in the eastern-central part of the Sacramento Groundwater Basin. It is bounded to the north by Deer Creek, to the west by the Sacramento River, to the south by Big Chico Creek, and to the east by the Chico Monocline. Los Molinos, Corning, and Butte Subbasins, lie to the north, west, and south, respectively. Surface water flows from the Rock Creek and Big Chico Creek and flows southwest from the Sierra Nevada Mountains towards the Sacramento River. Several smaller creeks and ephemeral streams also flow southwest near the project area, including Rock Creek and Keefer Slough. Two ephemeral stream channels traverse the project area and flow southwest with a gradient between one to two percent. The two ephemeral streams are and geographic boundary and surface water and groundwater are able to flow from the east.

Groundwater-bearing formations in this region are composed of Tertiary to late Quaternary age continental sediments of the Tehama Formation on the west side of the Sacramento Valley, and the Tuscan Formation on the east-side. The Tuscan Formation is the primary water-bearing formation underlying the project site. The continental formations mark the extent of water-bearing units. The depth ranges of the continental formation are generally from 800 to 1,200 feet below the ground surface (bgs) (VGS GSP 2021).

The Tuscan Formation is composed of a series of volcanic mudflows, tuff breccia, tuffaceous sandstone, and volcanic ash layers (California Department of Water Resources [DWR], 2003). The thickness of the Tuscan Formation reaches approximately 1,250 feet towards the center of the Valley. The geologic formations in the project area generally dip between 2 and 20 degrees to the southwest from the valley towards the Chico Monocline (DWR 2003). The Tuscan Formation is further divided into four separate stratigraphic units (A through D) with tuff or ash separating the different units in some areas (Helley and Harwood 1985). Units A, B, and C reside within the Vina Subbasin (**Table 1**). Each unit is composed of interbedded lahar deposits, volcanic conglomerate, tuffaceous sandstone, volcanic sandstone, and siltstone to varying degrees. Unit C is the shallowest unit in the study area and is overlain with younger alluvial fan deposits.

Near the project area, geologic formations with limited water-bearing capacity include Holocene age younger stream channel and alluvial fan deposits and Pleistocene age deposits, including the Modesto, and Red Bluff Formations (See Figure 1). Holocene age stream channel and alluvial fan deposits consist of unconsolidated gravel, sand, silt and clay from the erosion and deposition of the upgradient Tertiary volcanic flow and quaternary stream terrace alluvial deposits. Pleistocene age Modesto Formation deposits consists of unconsolidated, unweathered gravel, sand silt, and

clay. Pleistocene age Red Bluff Formation consists of a thin veneer of distinctive, highly weathered bright-red gravels (Halley and Harwood 1985).

AGE	FORMATION	AQUIFER
Holocene	Alluvium	Stream Channel and alluvial fan Deposits
Pleistocene	Modesto	Unconfined
	Red Bluff	Unconfined
		Unit C
Upper Pliocene	Tuscan	Unit B
		Unit A

Table 1: Stratigraphy and Hydrostratigraphy Beneath the Project Area

Understanding the general structure and composition of the subsurface geologic formations will aide in the understanding of the potential pathway for recharged water to move within the subsurface. In 2018, DWR conducted its Airborne Electromagnetic (AEM) geophysical survey of the Vina Subbasin and the vicinity of the project area,. The AEM survey utilizes an airborne geophysical technology to map depth-specific subsurface conditions by measuring variations in the electrical conductivity and resistivity of the subsurface to depths of approximately 1,000 feet. The vertical resolution varies with depth, with the ability to delineate approximately five to 10 foot thick geologic layers in the shallow subsurface, and a minimum of100 foot thick geologic layers at greater depths. Wood Rodgers utilized the DWR AEM data to create geologic cross-sections which provide a generalization of the subsurface conditions up to a depth of approximately 1,000 feet. In conjunction with the AEM data, lithologic data from domestic and irrigation wells drilled within a 2-mile radius of the project area are provided on DWR Well Completion Reports (WCR), which were obtained from the DWR Sustainable Groundwater Management Act (SGMA) Data Viewer website (DWR 2023) and are included in **Attachment A**.

To understand the possible hydraulic connection between the surface soils and subsurface, Wood Rodgers utilized the University of California, Davis Soil Agricultural Groundwater Banking Index (SAGBI) data. The data correlates a suitability index of soil type for groundwater recharge projects with a goal to develop a rating system that could be used to assess the suitability of an area to accommodate recharge activities while maintaining healthy soils. SAGBI data of the project area shows that the younger alluvium which consists of the upper part of the unconfined zone of the aquifer system has a rating ranging from Poor to Good.

Subsurface Geologic and Hydrogeologic Conditions

The proposed recharge basins E1, E2, D1, and D2 are generally located in an area with a higher SAGBI index rating and located in the Redsluff series soil type (See Figure 2). The Redsluff series is described by the United States Department of Agriculture (USDA) as very deep, moderately well drained soils that formed in overbank alluvium over channel alluvium from predominantly volcanic rocks. The soil is described as gravelly loam, on a less than 2 percent slope. The drainage and permeability of the Redsluff series is considered moderate. The hydraulic conductivity of the topsoil increases with depth to 80 inches bgs.

Two proposed recharge basins, J1 and J2, are in an area with a lower SAGBI index rating and located in the Wafap series soil type. The Wafap series is described by the USDA as deep, relatively poorly drained soils that formed in the alluvium from volcanic rocks. The soil is described as gravelly loam. The drainage and permeability of the Wafap series is considered poor. The hydraulic conductivity in the topsoil and decreases with depth to 42 inches bgs.

DWR WCRs from domestic and irrigation wells drilled within 2-miles of the project area (**Table 2**) indicate that the soil from ground surface to approximately 20 feet bgs consists of mixed fine and coarse cemented soils that include clay and interbedded gravel, cobbles, and clay soils until volcanic deposits are encountered between 85 and 155 feet bgs. The volcanic deposits, and red/brown clay as described in the available WCRs are presumed to be the upper portion of Unit C of the Tuscan Formation and the threshold between the upper unconfined aquifers and the shallowest portion of the water-bearing formations. The subsurface geologic conditions vary in composition between well sites due to the location of the wells along the alluvial fan and the varying soil descriptions used by the drillers in the WCRs.

Well Name (WCR No.)	Well Type	Total Depth of Well Log (feet bgs)	Top of Screen (feet bgs)	Bottom of Screen (feet bgs)
518070	Domestic	180	100	180
752066	Domestic	250	150	250
63043	Irrigation	568	-	-
101853	Domestic	230	-	-
114310	Domestic	165	-	-
E0326441	Irrigation	740	160	270
2019-011330	Irrigation	770	420	770
0996590	Domestic	200	160	200

Table 2: Wells Drilled Within 2-miles of the Project Area with DWR WCR Lithology Data

Generally, the interbedded clays, cobbles, and gravel are indicative of colluvium from the Tuscan Formation and stream terrace alluvial deposits. The lithology data from the WCRs correlates with Cross Section A-A' and B-B' (Figures 3 and 4) from the AEM survey in relation to the relative thickness of the unconfined alluvial deposits. The younger alluvial fan deposits are reported to generally be between 10 and 80 feet in thickness and approximately 60 feet thick near the project area according to the AEM survey.

Cross-section A-A' is located downgradient of groundwater flow from the proposed recharge basins and cross-section B-B' is located upgradient of groundwater flow from the proposed recharge basins. Cross-section A-A' (Figure 3) is located southwest of the proposed recharge basins and displays mixed fine and coarse grain material up to approximately 330 ft bgs and comprises the shallower aquifer. Beneath the shallow aquifer in the area is 80 to 160 feet of less permeable fines or clay. Below the clay layer is up to 650 feet of coarse-grained material that comprises the deep aquifer. The hydraulic communication between the upper and lower aquifer in this area is likely to be low but would require further study to quantitate. Cross-section B-B' (Figure 4) is located northeast of the proposed recharge basins and displays a thin layer of finegrained material or clay at the surface up to approximately 30 feet in thickness with up to approximately 30 feet of fine and coarse material below. Coarse grained material is displayed from approximately 60 feet bgs to 500 ft bgs. The AEM data indicates a thickness range of permeable soil in the unsaturated zone between 65 to 143 feet depending on the site-specific subsurface geologic conditions and seasonal fluctuations of groundwater. The geologic formations in the subsurface structurally dip towards the center of the valley to the southwest and generally in the same direction as groundwater flow. Surface water placed in the proposed recharge basins and subsequently infiltrated into the subsurface will likely follow the structural dip of the geologic formation and groundwater flow.

Groundwater Conditions

Groundwater levels in the vicinity of the project area have been declining since the year 2000 (DWR 2023). Groundwater movement is generally to the southwest in the project area. There is no significant change in groundwater direction between fall and spring with groundwater flow bearing 187 degrees in the fall and 210 degrees in the spring with a calculated gradient between 0.13 to 0.14 percent. Water level data from WCR No. 215535, located approximately 2.5 miles west of the project area, shows that over the period of record the average groundwater elevation is 149.5 feet msl (41.4 feet bgs) with seasonal fluctuations ranging from 164.5 to 135.9 ft msl (26.9 to 55.5 feet bgs). The depth to water beneath the proposed recharge basins, based on an average ground surface elevation of 229 feet msl, is estimated to be between 65 and 93 feet bgs over the period of record.

Historical groundwater levels within a 2-mile radius of the project area are illustrated in hydrographs prepared for select wells monitored by DWR in the project area and are shown in **Figure 5** and include seasonal elevation contours from Fall 2022. Groundwater elevations in Fall 2022 were between 150 and 140 feet mean sea level (msl) or approximately 75 to 95 feet bgs near the project area. The hydrographs display groundwater elevation trends within the upper unconfined aquifer (WCR No. 215535, WCR No. 57344, and WCR No. 265103) and the deeper confined aquifer of the Tuscan formation in two deeper wells (WCR No. 513092 and WCR No.

4060). Historical data from hydrographs of the wells within the upper unconfined aquifer exhibit relatively stable groundwater elevations since the early 1990s. Since approximately the year 2000, groundwater elevations began a steady decline with 10 feet of decline from 2000 to 2011 in WCR 57344 and 20 feet of decline from 2000 to 2023 in WCR 265103 and WCR 215535. WCR 393242 has limited historical groundwater elevations with data going back to 2018. The groundwater elevations in WCR 393242 are stable with minor seasonal fluctuations. Data from the WCR 4060 hydrograph exhibits stable groundwater elevations from the mid-1970s to late 2011. Historical data from the WCR 513092 exhibits higher seasonal fluctuations and a steeper decline in groundwater elevation than the other hydrographs from mid-2007 to mid-2023.

The data indicates the available storage capacity in the unsaturated portion of the subsurface ranges from 60 to 90 feet. Recharged water will likely infiltrate vertically until it reaches the saturated portion of the upper aquifer or an impermeable geologic layer, which will likely be the fine-grained material or clay found at depths between 300 feet and 350 feet bgs.

Conclusions

The subsurface data reviewed indicate permeable material likely exists to depths ranging from 300 feet to 350 feet bgs underlying the project site. Applied water is anticipated to migrate vertically into the subsurface to a depth between 60 and 90 feet, where it is reasonable to anticipate the water will flow horizontally following both the regional dip of the geologic formations, or where saturated, the general groundwater gradient. The dip of the geologic formations and groundwater elevation contours suggest that groundwater will likely flow towards the west to southwest away from the project site.

References

California Department of Water Resources (DWR, 2003). Sacramento Valley Groundwater Basin, Vina Subbasin. Bulletin 118. 2004.

DWR SGMA Data Viewer for groundwater level and land subsidence data (DWR, 2023), accessed August 2023 <u>https://sgma.water.ca.gov/webgis/?appid=SGMADataViewer#currentconditions</u>.

Helley, E.J., and D.S Harwood (Helley and Harwood 1985). Geologic Map of the Late Cenozoic Deposits of the Sacramento Valley and Northern Sierran Foothills, 1985

Vina Groundwater Subbasin Groundwater Sustainability Plan (VGS GSP 2021) Vina and Rock Creek Reclamation District Groundwater Sustainability Agencies, December 2021

J:\Jobs\8874_RCRD\8874001_RockSand\GIS\ArcGISPro\Groundwater\Groundwater.aprx 9/5/2023 11:05 AM akieta

J:\Jobs\8874_RCRD\8874001_RockSand\GIS\ArcGISPro\Recharge_Study\Recharge_Study.aprx 9/5/2023 11:13 AM akieta

J:\Jobs\8874_RCRD\8874001_RockSand\GIS\ArcGISPro\Groundwater\Groundwater.aprx 9/5/2023 10:59 AM akieta

ATTACHMENT A

Department of Water Resources Well Completion Reports within a 2-Mile Radius of the Project Site

23N/IE-17 /

ORIGINAL	STATE OF C	ALIFORNIA	Do not fill in
File with DWR	THE RESOUR	CES AGENCY	No 101052
			NO. 101853
Local Permit No. or Date	WATER WELL D	RILLERS REPORT	State Well No. Other Well CONFIDENTIAL LOG
(1) •		(12) WELL LOG: Taul data	3304 D. H. C. L. H. D. D.
Address		from ft. to ft. Formation (Descri	be by color, character, size or material)
City		<u> </u>	DIET
(2) LOCATION OF WELL (See in	nstructions):	10 - 18	Rock
Well address if different form shows	wher's Well Number	$\frac{78}{10} - 25$	Drown Clay
Township 33 N Range 18	Section 17	R5 - 102 .	Brown Charles
Distance from cities, roads, railroads, fences, etc	Munjor Rd8	102 - 117	Laxart
m. No . Ohico Al	rport.	117 - 163	Ked alay
	<u></u>		Gravel
	(3) TYPE OF WORK:	187 1 189	Brown Way
	New Well X Deepening	189 229	Red abou
a s nunjar	Reconstruction	229 - 330	Gravel
	Horizontal Well		Ž
	Destruction [] (Describe	Ho- M	0
3	procedures in Item 12		Rall
2 2	(4) PROPOSED USE		
	Irrigation		
	Industrial	The second secon	<u> </u>
	Ten Well		
	Stock	<u> - «D</u>	
WELL LOCATION SKETCH	Municipal IN		
(5) EQUIPMENT: (6) GI	LAVEL PACK:		
Rotary Bevense C	No Size		
Cable X Air	er of bore	<u>A</u>	
(7) CASING INSTALLED:	TOTO TO TOTO TO TOTO TO TOTO TO TOTO TO		
Steel R Plastic Concrete Type of	persprance or size of screen		
From To Dia Gapa or Fro	To She	-	
n. ft. Vin. Wall ft	tt. (size*	-	
(9) WELL SEAL: Sanit	ized V		
Was surface samilary scal provided? Yes a	No [.] It yes, to depthtt.		
Method of sealing		Work started 3/14 19.8/	Completed 3/15198-/_
(10) WATER LEVELS:	4	WELL DRILLER'S STATEMEN	T:
Standing level after well completion		This well was driller under my jurisdie knowledge and believe	tion and this report is true to the best of my
(11) WELL TESTS: Was well test made? Yes D No Y is	vet hv whom?	SIGNED CHICOWICH	
Type of test Rump Bai	ller [] Air lift []	NAME ALIN DILLA	5 TRIBLIIY
Depth to water at start of testft.	At end of testft	Arves. #UM	Trat De Bartor grinted)
Cheminal analysis made? Yes 🗇 No 🗙 If	yes, by whom?	City	
Was electric log made? Yes D No K If	yes, attach copy to this report	License No.	Date of this report

. He

.

ь ÷

DWR 188 (REV. 7.76) - IF ADDITIONAL SPACE IS NEEDED, USE NEXT CONSECUTIVELY NUMBERED FORM

ORIGINAL File Original, Duplicate and Triplicate with the REGIONAL WATER POLLUTION CONTROL BOARD No	WATER WELL D (Sections 7476, 787 STATE OF (RILLERS F 7, 7473, Water Orde) CALIFORNIA	LEPORT A	Do NO State Vell No Other Vell No.d	Not Fill In 63043 23.N/1E
1) OWNER:		(11) WELL	LOG:	<u> </u>	
			fr. David) जी त्राव्यानेतरनां प्रानी	
-	, · · · · · · · · · · · · · · · · ·	Junation: Discrite	· by color, character, star	of material, and struct	larr.
-		<u> </u>	3 th Soi		
····	· · · · · · · · · · · · · · · · · · ·		<u>12 - Dur</u>		DINFIDENTIA
(2) LOCATION OF WELL:			<u></u>	VOL	Code Ser IC
County DUCUE Owner's number, if	•••		47 Cla	J	137,
R. P. D. or Street No.	20-10	47 -	58 Gra	vel	
A_23 De Kelk Dem			74 · · · · · · · · · · · ·	y 	
			90 . La	¥ ·····	
· · · ·				vel	
(3) TYPE OF WORK (cbeck):		- 95 -	- 155 - 01a	y	
New well 22 Deepening [] Recondi	tioning 🚺 Abandon 🗌	155 -	169 LAV	8	······································
If abandonment, describe material and procedure in I	tem 11	167	290 Cla	У	
(4) PROPOSED USE (cbeck):	(5) EQUIPMENT:	290	<u>310 - 487</u>	8.	
Domestic 🔲 Industrial 📑 Municipal 📋	Rotary	325	332 . Lev	J A	,
Irrigation 😰 Test Well 🗌 Other 🛛 🗌	Dug Well	332		d Pan	· · · · · · · · · · · · · · · · · · ·
		345	360 Dev	8	
(6) CASING INSTALLED:	If gravel packed	360	390 Cla	y _	
	Diameter from to	390 "	410 Har	d ^F an	
Prom Oft. to 100ft. 12Diam. 10Wall		$\frac{410}{125}$	435 Gra	vel Cement	
		435	<u>475 Lav</u>	a wel Coment	
	14 **	475	<u>404 -1a</u> 495 San	d tone	
	11. 44	495	540 Har	d pan	
	F4 58	540	560 Gra	vel	
Type and size of shoe or well ring 1-14# Shoe	Size of gravel:	560	<u> 568 San</u>	d & Gravel	······································
	······································			·····	
(7) PERFORATIONS:		· •••			
Type of performer used none					· · · · · · · · · · · · · · · · · · ·
Size of perforations in., I	ngth, by in.		(4		
FTOEN ft. tn ft. Perf	per row Rows per ft.				
· · · · · · · · · · · · · · · · · · ·				<u>I D E M T</u>	<u>∓≜</u> ≢
	24 TA TA TA TA TA		Section 7	076.1, Wate	o <u>r Outo</u>
	·· · · · · · · · · · · · · · · · · · ·				
(1) CONSTRUCTION.					· · · · · · · · · · · · · · · · · · ·
Was a surface sunitary seat provided?] Yes The To	rhat depth ft.	41			
Were any strata sealed against pollution? 1 Yes (TRNo 1)	yes, note depth of strate			······	
From ft, to	ft.		*		
		11			
Method of Sealing		Work started Ma	r21.1959 "	. دستیست	tor. 16.1999 "
(0) WATED IDUDIC.	1	WELL DRILLE	R'S STATEMENT:		
(7) WAIER LEVELS:	an a	This well was	drilled under my jur	whiches and this	ugart is true to the bu
Standing level before perforation	ft.	My RHOWIEd ge en	s may. 	· · · · · · · · · · · · · · · · · · ·	4
Standing level after perforating	fr.	NAME LOSS	(Prant, fait, er jugen		(Tank to Annual to
······································		Address P.	0. Box 964		
(10) WELL TESTS:			co, faliforn	La	
Wes 3 pump test made? [] Yes [] No If yes, by where?		[Second]	(pre Mu	~ 4	
Yield: A420 3 mail./min. with 9931	tt. draw down after im.		20.57	v.d ada	15.1959
a emperature or water Wat a chemicol La	nyas 200007 📋 145 📋 240	License No.		Later	<u></u>

ŧ

OPERATION (2) Service in rescand MALE Description Male Description Male Description Male Male <th< th=""><th>Date Wo Local Per</th><th>vrk Began Permit Ag mit No</th><th><u>6</u> (enkry 269</th><th>27 130 61 60</th><th>-99 -11 -11 -11 -11 -11 -99</th><th>L, Ene</th><th>ded Peru G</th><th>-28.99</th><th>6 - / -</th><th>99</th><th></th><th></th><th>LATITUD</th><th></th><th></th><th>l R8/OTH</th><th>ONGITUDE 1 ER</th></th<>	Date Wo Local Per	vrk Began Permit Ag mit No	<u>6</u> (enkry 269	27 130 61 60	-99 -11 -11 -11 -11 -11 -99	L, Ene	ded Peru G	-28.99	6 - / -	99			LATITUD			l R8/OTH	ONGITUDE 1 ER		
0: 2: Spile Address Consets 2: IN D	OFIENTA DEPTI SUI Ft.	TION (∠) H FROM WACE 10 FL		mcal I to F L	FBIST V Describe	HORIZON VATER _ DESC. MINIMI	лы <u>\$0</u> (р ВЈРТІО 1, grain ríze	ANGLE Ft.) BELOW SU N 7, color, etc.	(SPECIFY) /RFACE]] L						Ψ,			
2 4 20 14 20 1	a	2	انمک ا					· · · · ·		Addre	S Con	EN ZI	ND		<u>+-</u> ,				
20 10	2:4: Haro Par - Cementer										<u></u> H	<u>(CO</u>	<u>.</u>		-				
20 SU SURALE: APN Book DE/I Page 2/20 Parel 2/9 L 20 15 Ido Ace U/ay - Cohole Tombab 2/20 I and accounts and accounts of a well and accounts of	4	20	HAL	₽	Pan	L	···•	_ ,		Count	ب ك	utte_	020						
20 25 GRAUEL Township Township Township Township	10	30	<u> </u>			• •				APN I	300k QH	Z_ Page	220	Parcel	 C	ਮਰੇ ਵ	1		
Ido I	20	0.00	<u> </u>	2/2	4 C	<u>.1a4</u>		·· • • • • • • •		Towns	hip	201. Rang		Sectio	0	20			
Ibo I	95	12	<u> </u>	100	<u> </u>	<u></u>			<u> </u>	Latitu	de		NCIRTH 5.	Longi	tude _	DEG.	MEN. SÉC.		
Image: Construction	11 1	100	5	<u>00</u>	4 -		LOCK				LO	CATION	SKETCH	<u> </u>		T. 4	CTIVITI (∠		
MODELADD (FER MODELADD (FER <td< td=""><td>1.4</td><td><u>; /////</u></td><td><u>; 29 A/C</u></td><td></td><td>-q/</td><td><u></u></td><td><u> </u></td><td>,</td><td></td><td></td><td></td><td> NORT</td><td>Η</td><td></td><td></td><td>1</td><td>NEW WELL</td></td<>	1.4	<u>; /////</u>	<u>; 29 A/C</u>		-q/	<u></u>	<u> </u>	,				NORT	Η			1	NEW WELL		
Posent Over to Planted Pl		<u>.</u>	:								- [MOD	FICATION/REPAIR		
Constant and the set of the		;	<u>.</u>			<u> </u>										i i	Deepen		
CASING(S)		÷	 -				·	·			Jen	ເວັ		NC.	_	i i	Other (Specif		
Image: State of the state		!	<u></u>			· · ·				<u>୍</u>	NZI		. 1	ନ	\cap				
Construction of the set of t		<u>+</u>	<u>+</u> · · · · ·								1			9	Y		DESTROY (Describe Procedurge and Mate		
Image: Source in the			1								1		L		1.	L	Under "GEOLOGICL ANNED USE/		
Image: State of the state		- +								ê 'ê	1						(≚)		
Image: Solution of the second state		<u>;</u>	<u> </u>					· '		κ. *	1		1		0	-	MONITORING		
Construction of the second secon										1	1				_[.≥	WATE			
										5	1		<u> </u>		ーえ		Domestic		
Image: Source in the		!	·							E I					12		Public		
Image: Source in the second of well from Londmarks of Completence of Well Line (Liff) TOTAL DEPTH OF BORING 1800 (Feet) Presson free to the Well Life (Liff) TOTAL DEPTH OF COMPLETED WELL LEO (Feet) Presson free to the Well Life (Liff) TOTAL DEPTH OF COMPLETED WELL LEO (Feet) Presson free to the Dead of a tuelly long-term yield PROM SURFACE BORE TYPE (Z) FL to FL (modes) WATERIAL / INTERNAL (AUGE SLOT SIZE FL to FL (Mentrice free the Well free the Well Hert Hold FE FILL (HTTER) ID 0 180 9.000 V PVC 5.00 CL 200 .032 O 145 V FL to FL (C) (Z) (Z) (Z) ID 0 180 9.000 V PVC 5.00 CL 200 .032 O 145 V FL to FL (Free to Hert Hert Hert Hert Hert Hert Hert Hert		<u>.</u>	<u> </u>												12		Irrigation		
Image: Source in the image: Sourc		;				···· · -									15		industrial		
SOUTH - CANDOR 1 CONTHE DESCRIPTION Landmarks SOUTH - CONFILTE - CANDOR 1 Illustrate or Descript Destance of Well from Landmarks CANDOR 1 CANDOR 1 CANDOR 1 DIRLING CANDOR 1 DIRLING CANDOR 1 DIRLING Retary Fluid CANDOR 1 DIRLING Retary Fluid CANDOR 1 DIRLING Retary Fluid DIRLING Retary Fluid DIRLING Retary Fluid DIRLING Retary Fluid CASING (S) TYPE (Z) TYPE (Z) TYPE (Z) Material / Material / Material / GRADE DEPTH FROM SURFACE DEPTH CASING(S) DEPTH FRICE DEPTH CASING(S) DEPTH FRI t	·	;													ျပီ		"TEST WELL"		
Image: Second States of Describe Database of Well from Landmarks in the second States of Orders Recer, etc.		<u>.</u>	<u> </u>									SOUT	н <u>— — — —</u>		•	- 1	- CATHODIC PRO TION		
PRLASE BE A COURTER & COMPLETE DRLING RotaRy DRLING RotaRy DRLING RotaRy DRLING RotaRy MATER LEVEL & YIELD OF COMPLETED WELL DEPTH OF BORING 180 (Feet) TOTAL DEPTH OF BORING 180 (Feet) TOTAL DEPTH OF COMPLETED WELL. 180 (Feet) TOTAL DEPTH OF COMPLETED WELL. 180 (Feet) TOTAL DEPTH OF COMPLETED WELL. 180 (Feet) TYPE () MATERNAL GAUGE BORE- TYPE () MATERNAL GAUGE TYPE () MATERNAL GAUGE BORE- TYPE () MATERNAL GAUGE BORE- TYPE () MATERNAL GAUGE BORE- O /@O O /@O JUL PVC 5.00 CL 200 O /#4 5 JUL 1 INDOC SCO C		<u>;</u>						• ••		Illustra such a	ite or Descr Roads, Bu	ibe Disience ildings, Fenc	of Well from es, Rivers, et	m Landı Iç.	narks	-	OTHER (Specify)		
DERLING Kotary FLUD FLUD FLUD Watter Level Y Y Y Y Y Y Watter Level Y <	_	<u> </u>	 							PLEA	SE BE AC	CURATE G	COMPLET	Е.					
WATER LEVEL & YIELD OF COMPLETED WELL DEPTH OF STATE TOTAL DEPTH OF BORINC TOTAL DEPTH OF COMPLETED WELL TOTAL DEPTH OF COMPLETED WELL TOTAL DEPTH OF COMPLETED WELL FROM SURFACE HOLE TYPE CASING(S) TOTAL DEPTH OF COMPLETED WELL FROM SURFACE BORE- HOLE TYPE CASING(S) TYPE CASING(S) TYPE CASING(S) TYPE CASING(S) TYPE O 100 180 9.00 PVC 5.00 CL 200 0.32 45 180 Sold Water Chemical Analyses I, the undersigned, certify that this report is complete and accurate to the best of my knowledge and b ANAME CASING OF COMPLETED		<u>; </u>	 							drillin Methqi	<u>6 </u>	tary			FLUID .	flie			
DEPTH OF BORING 180 (Feet) TOTAL DEPTH OF BORING 180 (Feet) TOTAL DEPTH OF BORING 180 (Feet) TOTAL DEPTH OF COMPLETED WELL 180 (Feet) TYPE (Feet) 100 180 PL 0 100 180 9.00 PVC 5.00 CL 200 0 145 IOD 180 9.00 PVC 5.00 0 145 IOD 180 9.00 PVC 5.00 0 245 180 5/8 GRag IOD 180 9.00 PVC 5.00 CL 200 0 145 1 1 IOD 180 9.00 PVC 5.00 0 <td< td=""><td></td><td><u>.</u></td><td>i 7</td><td></td><td></td><td></td><td></td><td></td><td></td><td>DEDTU</td><td>WATER</td><td>LEVEL</td><td>8 YIELD</td><td>OFC</td><td>OMP</td><td>LETE</td><td>D WELL -</td></td<>		<u>.</u>	i 7							DEDTU	WATER	LEVEL	8 YIELD	OFC	OMP	LETE	D WELL -		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	e	+								WATER		75	_ (Ft.) & D	ATE ME	ASURE	:o _ 6	-28-99		
TOTAL DEPTH OF BORING 180 (Feet) TEST LENGTH 2 (Hr.) TOTAL DRAWDOWN (Hr.) (Fr.) TOTAL DEPTH OF COMPLETED WELL 180 (Feet) TEST LENGTH 2 (Hr.) TOTAL DRAWDOWN (Fr.) May not be representative of a well's long-term yield. DEPTH FROM SURFACE DORE HOLE DIA. (noches) TYPE (2) (noches) ANNULAR MATERIA (noches) TYPE (2) (noches) MATERNAL (noches) DEPTH HOLE DIA. (noches) DEPTH HOLE DIA. (noches) DEPTH HOLE DIA. (noches) DEPTH HOLE DIA. (noches) DEPTH HOLE DIA. (noches) DEPTH HOLE DIA. (noches) DEPTH HOLE DIA. (noches) DEPTH FROM SURFACE ANNULAR MATERIA (noches) DEPTH HOLE DIA. (noches) DEPTH HOLE DIA. (noches) DEPTH HOLE DIA. (c) ANNULAR MATERIA (noches) DEPTH HOLE DIA. (noches) DEPTH HOLE DIA. (c) ANNULAR MATERIA (noches) DIA. (noches) DEPTH HOLE DIA. (c) ANNULAR MATERIA (noches) OI ANNULAR MATERIA. (noches) DEPTH HOLE DIA. (c) <th <="" colspan="2" td=""><td></td><td>n</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ESTIMA</td><td>TED YIELD</td><td>50</td><td>_ (GPM) &</td><td>TEST T</td><td>YPE _</td><td>Air</td><td><u>: List</u></td></th>	<td></td> <td>n</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ESTIMA</td> <td>TED YIELD</td> <td>50</td> <td>_ (GPM) &</td> <td>TEST T</td> <td>YPE _</td> <td>Air</td> <td><u>: List</u></td>			n								ESTIMA	TED YIELD	50	_ (GPM) &	TEST T	YPE _	Air	<u>: List</u>
TOTAL DEPTH OF COMPLETED WELL LED_ (Feet) * May not be representative of a well's long-term yield. DEPTH FROM SURFACE O POP CASING(S) TYPE (2) MATERIAL / GRADE MATERIAL / GRADE MATERIAL / GRADE MATERIAL / GRADE O WALL SLOT SIZE IF ANY (Inches) DEPTH FROM SURFACE A NNULA R MATERIA FROM SURFACE TYPE (2) MATERIAL / GRADE MATERIAL / GRADE MATERIAL / GRADE MATERIAL / GRADE DEPTH FROM SURFACE A NNULA R MATERIA FROM SURFACE FL to FL Colspan="2">MENTION SURFACE CEE BEN MENTIONIE FILL / MENTIONIE FILL / (C) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	TOTAL E	DEPTH OF	BORING _	180	2	Feet)				TEST LI		— (Hrs.)	TOTAL DRA	WDOW	N	((Ft.)		
DEPTH FROM SURFACE BORE- HOLE DIA. (nones) CASING(S) FI. to Ft. (nones) TYPE (Z) W & SSB & W W & SSB & SSB & W W	TOTAL C	EPTH OF	COMPLET	ED W	ELL _	80	(Feet))		* May 1	iot be repre	sentative of	a well's lor	ig-te rm	yield.				
DEPTH FROM SURFACE BORE- HOLE DIA INTERNAL (Inches) TYPE (\angle) BATERIAL/ (Inches) MATERIAL/ GRADE INTERNAL OR WALL (Inches) GAUGE IF ANY (Inches) SLOT SIZE IF ANY (Inches) DEPTH FROM SURFACE TYPE FI. to PL Ft. (Inches) TYPE (\angle) BATERIAL/ (Inches) MATERIAL/ GRADE INTERNAL OR WALL (Inches) GAUGE IF ANY (Inches) SLOT SIZE IF ANY (Inches) Ft. (\angle) TYPE O /00 9.00 PVC 5.00 CL 200 0 45 V IDD 180 9.00 PVC 5.00 CL 200 0 45 5/8 GRA IDD 180 9.00 PVC 5.00 CL 200 0 3/2 4/5 180 5/8 GRA IDD 180 9.00 PVC 5.00 CL 200 0 3/2 5/8 GRA IDD 180 9.00 PVC 5.00 CL 200 0 3/2 5/8 GRA IDD 180 9.00 PVC 5.00 CL 200 0 3/2 5/8 GRA ID ISO 9.00 PVC 5.00 CERTIFICATION STATEMENT 1				<u> </u>				CASINGIS	\						INNT		MATERIAL		
DIA. (notwes) Waterral Bission Materral GRADE GAUGE OR WALL (notwes) SLOT SIZE IF ANY (notwes) SLOT SIZE IF ANY (notwes) CE. (C.) BEN. (C.) FILTER F (TYPE/S) 0 100 9.00 PVC 5.00 CL 200 0 45 1 </td <td>FROM</td> <td>SURFACE</td> <td>BORE-</td> <td>TYP</td> <td>· 또 (_ `</td> <td></td> <td></td> <td></td> <td>, </td> <td></td> <td></td> <td>DE FROM</td> <td>EPTH SURFACE</td> <td></td> <td></td> <td>- 2.A.U T\</td> <td>/PE</td>	FROM	SURFACE	BORE-	TYP	· 또 (_ `				, 			DE FROM	EPTH SURFACE			- 2.A.U T\	/PE		
Fi. to Ft. <			DIA.	¥ ₹	5 जि	<u>г</u> м/	ATERIAL /	INTERNAL	GAUGE	SI	OT SIZE]		CE-	8EN-				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	FL 1	to Ft.	(inches)		; B g (1	GRADE	(Inches)	THICKNES	is	(inches)	Ft.	to Ft.	MENT	TONITE	FILL	(TYPE/SIZE		
100 180 9.00 PVC 5.00 CL 200 .032 45 180 3/8 Gra 100 180 9.00 PVC 5.00 CL 200 .032 45 180 3/8 Gra 100 180 9.00 PVC 5.00 CL 200 .032 45 180 3/8 Gra 100 180 9.00 PVC 5.00 CL 200 .032 45 180 3/8 Gra 100 180 9.00 PVC 5.00 CL 200 .032 45 180 3/8 Gra 100 1400 14000 1999 PVC 140000 1999 140000 140000 1999 1400000 14000000000000000000000000000000000000	0	100	a.ö0		++	1 PV	r	5.00	CI 200	<u>, </u>		0	15			(=)	· · · · · · · · · · · · · · · · · · ·		
ATTACHMENTS (\angle) Geologic Log Well Construction Diagram Geophysical Log(a) Soll/Water Chemical Analyses MORESS	102	IRN	9.00	╞╴	┟┼	100	č	F 00	CI. 200		032	। यहँ		†	<u> </u>		5/2 Genue		
ATTACHMENTS (2) - Geologic Log - Geologic Log - Well Construction Diagram - Geophysical Log(a) - Soll/Water Chemical Analyses - Soll/Water Chemical Analyses - CERTIFICATION STATEMENT - CERTIFICATION STA		<u>,</u>		; ⁼	++	+••	<u> </u>	131.00				···· • • • • • • • • • • • • • • • • •	100				-10 41(44/4		
ATTACHMENTS (2) - Geologic Log - Well Construction Diagram - Geophysical Log(a) - Soil/Water Chemical Analyses - Well Construction Diagram - Geophysical Log(a) - Soil/Water Chemical Analyses - Chico Ca 95 - Chico Ca 95 - Chico Ca 95 - Chico Ca 95	100	1 1	t ·	┢┼╋	+	1		-+	<u> </u>				<u></u>			<u> </u>			
ATTACHMENTS (\leq)				\vdash	++	+		-						+	<u>UUI</u>		4 1999		
ATTACHMENTS (\leq)		. 		┢┼┼	╡╂	+				- 									
- Geologic Log - Well Construction Diagram - Geophysical Log(a) - Soil/Water Chemical Analyses I, the undersigned, certify that this report is complete and accurate to the best of my knowledge and b NAME Eacl Watson Well DRILLING (PERSON, FIRM, OR CONFORMIDON) (TYPED OR FIRMER) - Soil/Water Chemical Analyses - Soil Chemical Analyses - Soil Chemical Analyses - Soil		:	IMENTS	<u>(上</u>))			L	·	- CE	TIFICA	TION ST	ATEMEN	<u>ــــــــــــــــــــــــــــــــــــ</u>			· ···		
- Well Construction Diagram - Geophysical Log(a) - Soil/Water Chemical Analyses ADDRESS - NAME <u>Eacl</u> Watson Well DRILLING (PERSON, FIRM, OR COMPONNIND) (TYPE) OR FRANCED ROLLING - Soil/Water Chemical Analyses - Soil Chemical Analyses - Soil Chemical Analyses - Soil Chemical Analy		ATTACI					I, the unc	dersigned, ce	rtify that th	is repo	rt is comp	lete and ac	curate to t	the bes	t of m	y know	ledge and belie		
- Geophysical Log(a) - Soil/Water Chemical Analyses - Soil Chemical Anal		ATTACI					NA	Farl	Wate	AN	Well	٦ø	ILLIN	Δ					
Soil/Water Chemical Analyses 8015 Cohasset Rs. CHICO Ca 95		ATTAC	Log				COL 20 COL 2010							7					
ADDRESS CITY CIAIT 79		ATTACI Geologic Well Con	Log struction Dia	gram]]	(PE	rsom, firm, dr i		•									
I Other II 27 a and a de-		ATTACJ Geologic Well Con Geophysi Sould IM-	Log struction Dia ical Log(a) er Chemisch	igram			(10 %	1501, FIRM, OR (57 (~~~	0.55P	+	R	, r	HKO		Ca	•	9597		

and the second se

and a second
•

ORIGINAL STATE OF CALIFORNIA File with DWR JAN 0 2 2004 WELL COMPLETION REPORT Refer to Instruction Pamphlet Page ____ of __ ELL NO./STATION NO №.752066 Owner's Well No. 67 Date Work Began ______, Ended ____, Ended ____ LATITUDE LONGITUDE HEALTH DO BUTTE CO. Local Permit Agency APN/TRS/OTHER 3844 Permit No., Permit Date 07-29-03 GEOLOGIC LOG WETL OWNER ORIENTATION (\leq) VERTICAL _ HORIZONTAL (SPECIFY) Ν ANGLE _ DRILLING DRILLING METHOD MUD RD TORYFL BOM TON DESCRIPTION ÷ł DEPTH FROM SURFACE ĊĪŢ Describe material, grain size, color, etc. STATE Et. 21P to Et. COBBLE 14577 Address. AUA. CLAY AND OPPUJU City CHTCO รอ 165 County BUTTE 250 LAVA AND APN Book _____ Page ____ Parcel _ Township _____ Range ____ OUE Section 20 NORTH Latitude. Longitude. WEST DEG. MIN. SEC DEG. MIN. SEC LOCATION SKETCH ACTIWITY (∠) NEW WELL MODIFICATION/REPAIR ___ Deepen ... Other (Specify) RENCOW A) DESTROY (Describe 5 Procedures and Materials Under "GEOLOGIC LOG PLANNED USES (∠) BRET WATER SOPPLY 8 . Domestic . Public Irrigation 🔔 Industria WEST MONITORING TEST WELL CATHODIC PROTECTION HEAT EXCHANGE DIRECT PUSH INJECTION MERIDIAN RD. VAPOR EXTRACTION SPARGING SOUTH Illustrate or Describe Distance of Well from Roads, Baildings, Fences, Rivers, etc. and attach a map. Use additional paper if necessary. PLEASE BE ACCURATE & COMPLETE. REMEDIATION OTHER (SPECIFY) WATER LEVEL & YIELD OF COMPLETED WELL DEPTH TO FIRST WATER _______ (Ft.) BELOW SURFACE DEPTH OF STATIC (F1.) & DATE MEASURED ________ WATER LEVEL ESTIMATED YIELD . ______ (GPM) & TEST TYPE ALC LIFT TOTAL DEPTH OF BORING 250 (Feet TEST LENGTH _____ (Hrs.) TOTAL DRAWDOWN_N/A- (Ft.) 250 (Feet) TOTAL DEPTH OF COMPLETED WELL . * May not be representative of a well's long-term yield. CASING (S) ANNULAR MATERIAL DEPTH DEPTH FROM SURFACE BORE-HOLE DIA. FROM SURFACE TYPE (∠) TYPE SCREEN CON DUCTOR FILL PIPE INTERNAL GAUGE SLOT SIZE MATERIAL / GRADE CE- BEN-MENT TONITE BLANK OR WALL THICKNESS FILTER PACK DIAMETER IF ANY (Inches) FILL Ft to Ft Ft. (TYPE/SIZE) 닅 Ft. lo (inches) (Inches) (\preceq) $(\leq$ ouc NA (1,210 0 150 40 75A (R 50 250 Ø32 CL.ZU CON 250 ATTACHMENTS (£) CERTIFICATION STATEMENT I, the undersigned, cartify that this report is complete and accurate to the best of my knowledge and belief. Geologic Log STATE DRELLING Well Construction Diagram Geophysical Log(s) <u>#</u>6 Soil/Water Chemical Analyses _ Other . 12-03 Sianea ATTACH ADDITIONAL INFORMATION, IF IT EXISTS.

IF ADDITIONAL SPACE IS NEEDED, USE NEXT CONSECUTIVELY NUMBERED FORM

RIGIN ile wit	AL h D	WR	.101	2	5	2017		WELL O	STATE C	ECALIF	ORNI	REPOR	r [[- DWR U	23N	101	W+	BI I
age 1	_0	f_1_		_		2011			Refer to In	n ng	96	590					1 1	
wner	W	ell No.	11-1	0.	1	6	-	11.	-11-16	03.	30	590		LATITUD	e l		LON	GITUDE
ate We	Den I	Began .	B	1+1	to	Co		nty Heal	lth De	pt				111	I.I.	L L	1.1	LILL
Dor	Pen	No EH	WS16-	-0	10	0	/	Permit	Data 8-	5-16		~			AP	NTREAC	THER	
A CI	ours.	110,404		GI	EOI	LOGI	C I	LOG	Date		-	560		WELL	OWNER	R		
PRIENTA	TIO	N (土)	_X ve	RTIC	AL.	_	HOR	IZONTAL	ANGLE	(SPECIFY)								2
1.000			DRILLING	3 1	Ai	rF	20	tary FL	UDQ-FC	am	4							
SU	RFAC	E S					DE	SCRIPTION		10 0	4							
PL.	10	R.	2	Desc	crit	be ma	ter	ial, grain size	, color, etc	211-22	1		ws11	2004	(gan)			
<u></u>	+	8	CL	ay.	ő	RC	QÇ,	K /	Hin	2-6	A.d	diges	Chic	TRO	au	_		
E	÷	52	Gra	ay av	01	£	R	ock	8.00	2	1 dest	83 0	Butt	e				
3	t	200	Sat	nd	st	one	2 1	with Sea	ams of	~	1/2	N Book 04"	Dama	100	Parcel	0	185 '	202
-	1	200	Cer	nei	nt	ed	G	ravel.	211	10	To	anishin 00	Rang	0	Sectio	n		
	1		S 2		1	2	1	111	()	V	Tat		- I - I	N	Long		1	i w
	1		8	Ce	21	11			12	0	2	DEG. MI	ATION	EC.	6	* DEK	a	AN SEC.
	1		6	117	2	1	\overline{D}	121	1-4	alla		200	- NORTH			-	XX M	EW WELL
	1		D	-	5	-	1	111	0	20							MODIFI	CATION/REPAIR
	+		-6	-	9	44	1	20	0P		1	S.					-	 Deepen Other (Specify)
-	+	-	-11	-	+	++	>	202	<u> </u>		1						32	
_	÷	10	~/	~	6	/	C.	Stern n									DI Pr	STROY (Describe ocedures and Materials
-	÷	11	1	-	-	010	2	9-12-			1				3		INCRE	am . GEOFORIC FOR.
1	Ť	-7	9	~	ĴÎ	410	-				1						WATER	SUPPLY
	1		8		1						1					. 1	AA Di	mestic Public
	1										12					AST		MONITORING
	÷		Q								15					w		TEST WELL
	-	_															CATHOD	IC PROTECTION
	<u>i</u>	-	8		_						4						0	BAT EXCHANGE
_	+			_			_				4							INJECTION
	+		<u> </u>	_	_		_				1						VAP	OR EXTRACTION
	÷				_	_	_				1		- SOUTH					SPARGING
	÷										Tils Fee sec	strate or Describe 1 ices, Bicers, etc. and essary. PLEASE BI	listance of Sattach a v E ACCUR	Well from Bo up. Use add NTE & COM	oods, Build Blonal pap IFLETE.	ings, er if	0	THER (SPECIFY)
	÷				-		-					WATER	LEVEL	& YIELD	OF CO	OMPLI	ETED	WELL
_	÷	-	2		-	_	_				DE	PTH TO FIRST W	TER	(FL) 8	BELOW SI	URFACE	0	
_	1			-	_		7				DE	PTH OF STATIC	58			-	11-1	1-16
	1		2							1		THATED VIE D .	100+	(PL) & DA1	TEST TY	PE AS	ir L	ift
OTAL 1	DEP	TH OF	BORING			- 3	Fee	e)			TE	ST LENGTH	(Hm.)	TOTAL DRA	WDOWN_		(FL)	
OTAL I	DEP	TH OF	COMPLET	ED	W	ELL .	2	0.0(Feet)			•1	May not be repres	entative o	of a well's k	ong-term	yield.		
DE	PTH	ŧ	BORE.	L				0	ASING (S))			D	EPTH		ANN	ULAR I	MATERIAL
MOR	SUR	FACE	HOLE	1	YP	E(≚)	-	BAATE DOAL	INTERNAL	OAUG		SLOT SIZE	FROM	SURFACE	05	BEN	TY	×E
P	to	PL I	(Inches)	NWX	100%	調	2	GRADE	DIAMETER	OF WA	LL	IF ANY	B	In Fi	MENT	TONITE	FILL	FILTER PACK (TYPE/SZE)
<u> </u>	-			-	8	191	ť.	at	(increat)	100	.00	(increat)		1	(≚)	(≍)	(<i>≚</i>)	de conserved.
1	+	160	6-5/	8	-	++	+	Steel	. 6	.188	-		0	: 24	-	XX		
60	+	200		+	-	+	+	PVC	4	Line	ε Γ			1	-			
-	÷	_		t	+	+	+		-		-			1	-			-
	1			t	t	++	+			-	-		-	1	-			
	Ť	-		t	t	Ħ	+				-			1				-61
	- /	ATTACI	IMENTS	(×)	-	-	I, the und	ersigned, ce	ertify that t	this re	CERTIFICAT port is complete	TION ST and acc	ATEMEN urate to the	T	my kr	nowledg	e and belief.
		Geologic	Log	200	6.5				Tel .	S No		an Dril	ling		100000	103212	100091	1.60 ISS 555 557 12 10
		the second se	struction D	agra	m			NAME (PERS	ON, FIRM, OR	CORPORATION	(TIPE	D OR PRINTEDI	TTHA	17975	2013	in the		
	_	Well Cor	inal Londo															
2		Well Cor Geophys Soil/Wate	ical Log(s) v Chemica	Ana	dyne	15			P. (0. Bo	x 1	1010, Re	d Bl	uff, (CA	960	80	
		Well Cor Geophys Soll/Wate Other	ical Log(s) v Chemica	I Ana	ulyse	65		ADORESS	P	0. Bo	x 1	1010, Re	d Bli	uff, (cirr	CA	9608 16	80 500	6577 ⁷⁹

i

i

State of California Well Completion Report Form DWR 188 Auto-Completed 10/14/2019 WCR2019-011330

Owner's Well	l Numb	er	Date Work Be	əgar	n 07/17/2019	Date Work Ended	08/13/2019
Local Permit	Agenc	y Butte County Public Health					
Secondary P	Permit A	gency	Permit Nu	mbe	er EHWL 19-0009	Permit Date	08/01/2019
Well Ow	ner (must remain confidential	pursuant to W	/ate	er Code 13752)	Planned Use	and Activity
Name XX	XXXXX	xxxxxxxxxxxxxx				Activity New Well	
Mailing Addr	ress	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX				Planned Use Water Su	upply Irrigation -
		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX				Agriculture	e
City XXXX	XXXXX	xxxxxxxxxxx	State X	Х	Zip XXXXX		
			Well L	_00	cation		
Address					A	PN 047.100.200	
City		Zip	County	Butt	te T	ownship 23 N	
Latitude	39	49 32.5199 N Lon	gitude -121	55	27.12 W R	ange 01 W	
<u> </u>	Deg.	Min. Sec.	Deg. M	/lin.	— <u> </u>	ection 25	1-
Dec. Lat. 3	- 39.825	7 Dec	. Long121.9242		В	round Surface Flouration	010
Vertical Datu	um	Horizon	tal Datum WGS84		G	levation Accuracy	
Location Acc	curacy	Location Dete	ermination Method		= E	levation Determination Method	
			-				
		Borehole Information			Water Le	evel and Yield of Com	pleted Well
Orientation	Verti	cal	Specify		Depth to first water	(Feet be	low surface)
Drilling Meth	nod C	Other - Reverse Drilling Fluid	Bentonite	-	Depth to Static	EE (Fact) Data Maa	oursd 08/12/2010
		otary		-	Estimated Vield*	(CPM) Test Type	
Total Depth	of Bori	na 770	Feet		Test Length	(Hours) Total Drav	, wdown (feet)
Total Depth	of Corr	pleted Well 770	Feet		*May not be represe	ntative of a well's long term yie	ld.
		·					
			Geologic Lo	og	- Free Form		
Depth fro	om				Description		
Feet to Fe	eet				Description		
0	12	clay					
12	45	volcanics with gavel					
45	55	clay					
55	60	gravel					
60	97	clay					
97	138	volcanic gravel					
138	155	clay					
155	177	gravel					
177	440	clay					
440	465	gravel					
465	508	clay					
508	600	gravel					
600	770	volcanics					

							Casing	S							
Casing #	Depth from Feet to	m Surface o Feet	Casi	ng Type	Material	Casings S	Specificatons	Wal Thickn (inche	l ess es)	Outside Diameter (inches)	Screen Type	Slot Size if any (inches)	De	scription	
1	0	420	Blan	k	PVC	OD: 17.4 SDR: 17 1.024 in.	00 in. Thickness:	1.02	24	17.4					
1	420	480	Scre	en	PVC	00 in. Thickness:	1.02	24	17.4	Milled Slots	0.05				
1	480	500	Blan	k	PVC	OD: 17.4 SDR: 17 1.024 in.	00 in. Thickness:	1.02	24	17.4					
1	500	770	Scre	en	PVC	OD: 17.4 SDR: 17 1.024 in.	00 in. Thickness:	1.02	24	17.4	Milled Slots	0.05			
						An	nnular Ma	aterial							
Depth Sur Feet t	from face to Feet	Fill			Fill T	ype Detail	s			Filter Pack	Size		Descript	ion	
0	0 50 Cement 10.3 Sack Mix														
50	770	Filter P	Pack	6 x 16					6 x	16 and 6 x	12 mix				
Other	[·] Observa	ations:													
	E	Boreho	le S	pecific	ations					Certific	ation S	tatemen	t		
Dept Su Feet	h from rface to Feet		Bor	ehole Dia	ameter (inches)		I, the undersig	ned, certify	hat this	s report is comp SU	blete and accu	rate to the best	of my knowled C	ge and belief	
0	770	28						Person, I		or Corporati	on		C 4	050	
								Adc	Iress	221		City	State		<u>р</u>
							Signed	electron C-57 Lice	<i>ic sig</i>	gnature red Water Well C	ceived	08/13/201 Date Signe	19 ed C-57	656504 License Nu	mber
										DW	/R Use	Only			
							CSG #	State \	Vell I	Number	Sit	te Code	Local	Well Nur	nber
								tude D	ea/N	 Min/Sec	N	Longitu	de Deg/	Min/Sec	
							TRS:		og/n			Longita			
							APN:								

"The fre	e Adobe F	Reader m	sy be used to vie	w and comple	te this form. H	oweve	r, software /	nust be purch	ased to com	plete, sav	re, and reu	se a saved fo	em.
File Or	iginal with	DWR					State of Ca	Ilfornia			0	WR Use Onk	y - Do Not Fill In
Page	1	of	1 FEB 2	2 7 2017	We	I Co	omplet	ion Rep	ort		1 0	23N/10	W-30
Owner	s Well N	umber		1 1011		Ret	er to Instruction	n Pamphlet			S	tate Well Num	iber/Site Number
Date W	/ork Bega	n 10/0	5/2016	Dat	e Work Ende	1 10/	13/2016			14	Latitude	N	Longitude
Local P	Permit Ag	ency Bu	tte County P	ublic Healt	h	_					1	11	
Permit	Number.	EHWL	16-0012	_ Permit 0	Date 6/20/16	;						APN/TH	RS/Other
			Geo	logic Log					4		We	Il Owner	
0	rientation	n ©Ve	rtical OH	orizontal	OAngle	Spec	ify	-11					
Dent	g Method	Lurface	stary	De	Driting Flux	Der	itonite mud	-					
For	1 10	Feet	De	scribe materia	I, grain size, co	lor, etc	0						
0	3	-	clay			_	_		-		Well	Location	
3	18	1	rock					Addres	s <u>4684 K</u>	ilkare I	ane		
18	38		clay					City _C	hico			Cour	nty Butte
38	42		gravel					Latitud	0		-	N Longitud	leW
42	1/6		ciay					Datum	Deta.	Dec. L	at.		Dec. Long.
185	187		clay and frac	tured clay				APN B	ook 047	Pa	oe 330		Parcel 010
187	196		gravel 192	Hard				Townst	nip	Ran	ge		Section
196	240		clay and frac	tured clay					Loca	tion SI	ketch	T	Activity
240	246		gravel			_		(Skelch	must be draw	n by hand	after form is	printed.)	New Well
246	330		clay							restun	1		O Modification/Repair
330	335		gravel								1		O Other
335	555		clay										O Destroy Describe procedures and materials
555	650	6 1	black gravel					-11			1	F	pider GEOLOGIC LOGY
650	692		clay					-11	1		1		Planned Uses
692	740	E	black gravel					-11	ALCEIDU	wed	1		Domestic Public
_	-	-					_	ti a	P-FEIG-	he	LIC-IKA	AN LUTE	Imigation Industrial
								- 1 *	1	R		21	O Cathodic Protection
	-	-						-11	1	K		P	O Dewatering
-	-	-						-11 - 2	12	- 1	T	8	O Heat Exchange
	-	-					_	-11	12		R	9	O Injection
		-						-11	H		r		O Remediation
	-	-						-11	2		. C.		O Sparging
2	_						_			South			O Test Well
								Bushats or a	leatribe distance nd allach a map.	of well from Use addition	noeds, building	p. ferces,	O Vapor Extraction
								Please be a	courate and con	upleta.	-		
								Water	Level and	Yield	of Com	pleted We	
		-				_		Depth to Depth to	o first wate o Static	·—			(Feet below surface)
								Water L	evel 50		(Fee	et) Date M	easured 10/13/2016
Total 0	Depth of 8	Boring	740			Feet		Estimat	ed Yield *		(GP	M) Test Ty	pe
Total 0	Depth of C	Complete	ed Well 270			Feet		Test Le	ngth	entation	(Hoi	urs) Total D	rawdown(Feet)
	_	_		Cae	Ince	_		anay is	n de repre		o or a we	Annular	Material
Dept	h from rface	Boreho Diamet	er Type	Mate	rial V	Vall kness	Outside Diameter	Screen Type	Slot Size If Any	Dep	th from urface	Fill	Description
Feet	160	(Inches	Black	PVC	(in	R-21	(Inches)		(Inches)	Feet	20	Bentonite	3/8" chios
160	200	20	Screen	PVC	SD	R-21	10	Milled Slots	0.050	20	270	Filter Pack	6 x 16 sand
200	240	20	Blank	PVC	SD	R-21	10		Current				
240	270	20	Fill pipe	PVC	SD	R-21	10	Milled Slots	0.050				
						_							
	_	Attach	ments					(Certificati	on Sta	tement		
	Geologic	Log	Discuss		Name Sull	van l	Drilling, In	at this report	is comple	te and a	ccurate t	o the best o	my knowledge and belief
H	Geochus	ical Loc	(s)		EAEP Co	erson, i	Firm or Corpo	ration.	Ode	nd		CA	05063
	Soil/Wate	er Chem	ical Analyses		0400 000	0	Agoress	0 nn n		CR	Y	State	Zp
	Other	14514	Salato		Signed	han	he of	ulliva	-		10/19/	2016 656	504
Attach ad	Stional inform	nation, if it	exists.		c	or up	ensed water t	wei contractor			Date Si	gned C-5	/ License Number

DWR 188 REV. 1/2006

IF ADDITIONAL SPACE IS NEEDED, USE NEXT CONSECUTIVELY NUMBERED FORM

		•					*	13×11ビー17
		` ¥						Do Not Fill I#
ORIGII File wi	NAL Ini dwe			D		THE RESOUR		Nº 114310
-				W	A'T'I		RUIFRS REPORT	State Well No
								Other CONFIDENCE
			-					- Want Code S. LOG
/ • • • / • • •	N.7 17 TS .						(11) WELL LOG:	Soc. 13753
							Такай айрак 165 ж. ре	ach of complexed well 105 fr.
							Presention: Describe by caller, chematter, sist of	material, and structure
							ft. 1	ft
(2) LOO	CATION	N OF W	ELL:	•		•	· · · · · · · · · · · · · · · · · · ·	
County	Butt	e	· · · · · · · · · · · · · · · · · · ·	Owner's num	er. if 10			Not
Township, Ra	inge, and Sec	tion 7	<u>an</u>			SK 17	U2 Light Rocky	Jance Books
Distance from	s citits, road	s, railroada, et		77/ Fe		San II /Make		<u>av</u>
-120/					4		2 34 TOTTOR 2-	d & Gravel
() 112	PE OF	WUKK	(CDECR); 		· · · · · ·	63-91 Hard stic	ky grown clay
New weit 1	n descerib	epening 📋	Kecon nd broceds	ditioning [11 	Destroying []	91113 Sandston	3
(A) DR(DDOSEF	TISE /	check)	•	761	FOURPMENT.	113127 Coarse	sand
Domestic		netrial ("	Munic	inal 🗂	. (7) Ro		127164 Coarse	sand a Drown Clay
Irrigation	n 🗂 Tes	t Well	0	ther	Ca	ble 🗛	164165 Coarse	sand & F.avel
					Ot	her 🗌		
(6) CAS	SING I	NSTALI	ED:					
STE		ОТНЕ	R		lf gra	vel packed		
SINGLE T	DOUE			ļ				
-	- 1 1	. —	1	Diamate	- 1	1		
From	То		or	of	'	From To		
<u> </u>	ft.	Diam.	Wall	Bore		fr. ft.	ļ.	
0	70	81	12Ga				· · · · · · · · · · · · · · · · · · ·	
·	┟───┤		_		_	ł		·····
	L							
Size of shoe of	r well sing:	<u>8x6x1</u>	/2	Size of gr	wel:	· · · · · · · · · · · · · · · · · · ·	CO	NEIDENTIAL LOG
(7) DEE	EOD AT	<u>C.L., DU:</u> FIONS (<u>tt We</u> DR SCI	<u>ld Öx</u> Peenia	<u>24 x</u>	1/4 B.W.	Wat	er Code Sec. 13752
(7) FEE								
- ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			D (· · · · · · · · · · · · · · · · · · ·
From	1	Co	Perf.	Der		Size		
fr.	f	т.	tow	ft.		in. x in.		
	_							······································
(8) CO	NSTRU	CTION:	1			Гo		
Was a surface	t sanitary sea	provided?	Yes 🙀 🤰	No 🗍	To what	it depth 50 ft.	·······	
Were any stra	era scaled aga	inst pollution	? Yn 🗋	No 🗌	1	f yes, note depth of strata	·	
from	ft.	60	<u>ft.</u>					1 3/23776
hrom	<u>fr.</u>	<u>»</u> Puddle	<u>_n</u> ∍d C1	<u>ο</u> π			WELL DRULER'S STATEMENT	
Method of sea			<u> </u>	çı <u>y</u>			This well was dvilled under my juri	sdiction and this report is true to the best
() WA Denth at whi	ich water w	EVELS:	. if knowe	91		ft.	of my knowledge and belief.	
Standing law	el before re-	rforatine if	known			fs.	NAME TO Plumo	r & Co
Standing leve	el after perf	orating and d	leveloping	70		ft.	(Person, firm, or o	orporation) (Typed or printed)
(10) W	ELL T	ESTS:		- · ~ · ·		· · · · · ·	Address 51 1 Jact 11	th_St.
Was pump ter	st made? Y	er X 1 No		lf yes, by wh	m?	Bailer	Chico Ca	lif
Yield: 30)	I./min. with	0	ft. draw	lown af	er hrs.	[SIGNED]	
Temperature	of water		Was a chemi	cal analysis n	lade? Y	es 🔲 No 🗍		(Vell Driller)
Was electric 1	log made of	well? Yes [No 🗋	If ye	i, attach	copy	License No. 279572 D	ared 3/31/76 , 19

SKETCH LOCATION OF WELL ON REVERSE SIDE

i instanto e